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Relationship with Quantum Computing

Quantum Physics

Quantum Computing

Quantum inspired/motivated ML

Mathematical formulation



Relationship with Quantum Machine
Learning

Type of Algorithm

classical quantum

CC | CQ
QC QQ

classical

Type of Data

quantum

Classical Machine learning from Quantum, e.g. Boltzmann machine, Gradient decent

Machine Learning deployed on Quantum computers, speed up the classical machine
learning algorithms



Quantum theory Outside Physics

Quantum mind/brain/consciousness/cognition . .
Social science

E. Haven and A. Khrennikov. 2013. Quantum
ocial Science. Cambridge University Press.]

Cognition science

%Jerome R. Busemeyer and Peter D. Bruza.
013. Quantum Models of Cognition and
Decision. Cambridge University Press]

fThe Arrow
| of Time

) 5ty Information retrieval

i e Alessandro Sordoni, Jian-Yun Nie, and

7 is the same

oshua Bengio. 2013. Modeling term
i . dependencies with quantum language models
Ene1gy and momenrum slows the rate that time ﬂowstormmuacurvarule of for IR. In Proc. of SIGIR. ACM, 653_662]

spacetime relative to.its own energy w1thm each individual referente frame.

Our works do not rely on quantum cognition
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Quantum IR

Quantum Formulism can formulate the different IR models (logic, vector,
probabilistic, etc.) in a unified framework.

C.J. van Rijsbergen

UK Royal Academy of Engineering Fellow
SIGIR 2006 Salton Award Lecture

[C.J. van Rijsbergen 2004, Geometry of Information Retreival]
[Piwowarski B, et al. What can quantum theory bring to information retrieval. CIKM 2010. 59-68]



Roadmap of Quantum IR formal models

Milestones

>

|

Quantum Analogy
based IR Methods

Double Slit
(Zuccon et al. ECIR
2009)

Photon Polarization

(Zhang, et al. ECIR 2011,

ICTIR 2011)
Pros & Cons:

+ Novel intuitions
[ECIR’11 Best Poster
Award]

- Shallow analogy
- Inconsistent with
quantum axioms

Quantum
Language Models
(QLMs)

Original QLM
(Sordoni et al. SIGIR
2013)

QLM variants

(Li, Li, Zhang, SIGIR
2015)

(Xie, Hou*, Zhang*,
IJCAI 2015)

Pros & Cons:

+ Consistent with
axioms

- QLM components
are designed
separately, instead
of learned jointly

Neural Quantum Language
Models

End2end QLM for QA
(Zhang et al. AAAI 2018)

Further variants
(Zhang et al. Science China 2018)

Pros & Cons:

+ Effective joint learning for
Question answering;

- Lacks inherent connection
between NN and QLM

- Cannot model complex
interaction among words

Credits from Prof. Peng Zhang



Quantum Theory & NN

/A
[ QUSRI

N ‘ [3,4] ~ Mechanics

\ / \ /

[1] Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks[J].
Science, 2017, 355(6325): 602-606.

[2] Gao X, Duan L M. Efficient representation of quantum many-body states with deep neural
networks[J]. Nature communications, 2017, 8(1): 662.

[3] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural
networks[J]. Science, 2018, 361(6406): 1004-1008.

[4] Levine Y, Yakira D, Cohen N, et al. Deep Learning and Quantum Entanglement: Fundamental
Connections with Implications to Network Design[C]. ICLR 2018.
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Basic Dirac notations

Bra & Ket
Bra: < .| like a row vector, e.g. < x|
Ket: | - > like a column vector, e.g., x>

Inner Product

<x|x>

Outer Product

|x > < x|
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Four axioms in Quantum Mechanics

Axiom 1: State and Superposition
Axiom 2: Measurements
Axiom 3: Composite system

Axiom 4: Unitary Evolution

[Nielsen M A, Chuang | L. 2000]
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Quantum Preliminaries

* Hilbert Space
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Quantum Preliminaries

* Hilbert Space ®
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Quantum Preliminaries
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Quantum Preliminaries

* Hilbert Space

 Pure State
* Basis State

« Superposition State

* Mixed State
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Quantum Preliminaries

Hilbert Space

Pure State
* Basis State

« Superposition State

Mixed State

Measurement
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Research Problem

 Interpretability issue for NN-based NLP models
1. Transparency: explainable component in the design phase

2. Post-hoc Explainability: why the model works after execution

The Mythos of Model Interpretability, Zachery C. Lipton, 2016

Research questions :
1.What is the concrete meaning of a single neutron? And how does
it work? (probability)
2.What did we learning after training? (unifying all the subcomponents
in a single space and therefore they can mutually interpret each other)



Inspiration

Distributed representation
Understanding a single neutron
How it works

What it learned



How to understand distributed
representation (word vector)?



Distributed representation vs
Superposition state over sememes

Apple

=)

|Apple>=a |@>+b |@>+..c|?>
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Decomposing word vector

» Amplitude vector (unit-length vector)

» Corresponding weight for each sememe
* Phase vector (each element ranges [0,2Pi])

* Higher-lever semantic aspect
* Norm

« Explicit weight for each word.



How to understand the value of a
single neutron?



One neutron or a group of neutrons?

Vanilla neutrons

/
\'\T

Capsules by Hinton
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How does the neural network work?



Driven by probability?

Classical probability: set-based probability theory
(countable) events are in a discrete space

Quantum probability: projective geometry based theory
(uncountable) events are in a continuous space



Uncertainty in Language/QT

* Asingle word may have « Uncertainty of a pure state
multiple meanings L
o
“Apple
fa z .
+ S e
* Multiple words may be « Uncertainty of a mixed state
combined in different ways ,
“Ivory T SN ST
w7 tower” @) 1 ‘—k» + or
" ) 17 N T
5._ : UNIVERSITY OF MINNESOTA — O
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What did it learn?



How to interpret trainable components?

* A unified quantum view of different levels of linguistic

units
« Sememes
 Words
 Word Combinations
 Sentences

Therefore they can mutually interpret each other

Measurement

enfny
.
* o
o

>
ol ] Sememe

Word combination
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Semantic Hilbert Space

Word Word Semantic High-level Semantic

Words "
Vectors Composition Features
— L\ / LN / -~ P AN
=& =@ = BE-O
{\w>} o) o) L v
:> OOO = ooo 000;--- 000
@ 000 000 000 o000
Pure  Mixed State Semantic
States Measurements
Benyou Wang*, Qiuchi Li*, Massimo Melucci, and Dawei Song. Semantic Hilbert Space for Text Representation Learning. In
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Application to Text Matching

Mixture ‘
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Complex-valued Network for Matching
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L2-normed word vectors
as superposition states

Softmax-normalized word
L2-norms as mixture
weights

mr  Ermbhaddine T T — - - - - - - - "TMivtrryepm """ "="""""="""=""7"=7"0

000
000

000
000

00

Word Density

Q00

®

Density Matrix

(O
- @O
o/\O

Probabilities

®

P |

34



Experiment Result

« Effectiveness
« Competitive compared to strong baselines
« QOutperforms existing quantum-inspired QA model (Zhang et al. 2018)

Model MAP MRR
Bigram-CNN 0.5476 0.6437 Model MAP MRR
LSTM-3L-BM25 | 0.7134  0.7913 Bigram-CNN 0.6190 0.6281
LSTM-CNN-attn | 0.7279  0.8322 QA-BILSTM 0.6557  0.6695
aNMM 0.7495  0.8109 AP-BILSTM 0.6705  0.6842
MP-CNN 0.7770  0.8360 LSTM-attn 0.6639  0.6828
CNTIN 0.7278  0.7831 CNN-Cnt 06520  0.6652
PWIM 0.7588  0.8219

QLM 0.5120 0.5150
QLM 0.6780  0.7260
CNM 07701 0.8591 CNM 0.6748 0.6864
Over NNQLM-II | 1.48% 1 4.08% 1 Over NNQLM-II | 3.883% 1 4.09% 1

Experiment Results on TREC QA Dataset. The best Experiment Results on WikiQA Dataset.The best per-
performing values are in bold. forming values are in bold.
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Experiment Result

Ablation Test
v Complex-valued Embedding

* non-linear combination of amplitudes and

phases

v Local Mixture Strategy

v Trainable Measurement

Setting MAP MRR
FastText-MaxPool 0.6659 (0.1042)) 0.7152 (0.1439))
CNM-Real 0.7112 (0.0589))  0.7922 (0.0659.)
CNM-Global-Mixture 0.6968 (0.0733))  0.7829 (0.0762))
CNM-trace-inner-product ~ 0.6952 (0.0749))  0.7688 (0.0903])
CNM 0.7701 0.8591
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Transparency

Components DNN CNM
basis one-hot vector / basis state
Sememe - {ele € R™, ||e||2 = 1}

complete &orthogonal
real vector  unit complex vector / superposition state
(—00,00)  {wlw € C", [|w[|z = 1}
N-gram/ real vector  density matrix / mixed system
Word combinations  (—o0,00)  {plp = p*,tr(p) =1
CNN/RNN  projector / measurement

Word

Abstracrion (~00,00)  {w v e [z = 1)
Sentence real vector  real value/ measured probability
representation (—o0,00)  (0,1)

Physical meanings and constraints.

« With well-constraint complex values, CNM components
can be explained as concrete quantum states at design
phase



Post-hoc Explainability

 Visualisation of word weights and matching patterns

a )
Q: Who is the [president or chief executive of Amtrak] ?
A: ...said George Warrington, [Amtrak ’s president and chief

executive].
\ _J
a4 )

Q: How did [women ’s role change during the war] ?
A: the [World Wars started a new era for women ’sj
opportunities to...

_/
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Semantic Measurements

« Each measurement is a pure state
« Understand measurement via neighboring words

Selected neighborhood words for a measurement vector
andes, nagoya, inter-american, low-caste

cools, injection, boiling, adrift

andrews, paul, manson, bair

historically, 19th-century, genetic, hatchback

missile, exile, rebellion, darkness

| | W B —

Selected learned measurements for TREC QA. They
were selected according to nearest words for a mea-
surement vector in Semantic Hilbert Space.
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Word L2-norms

« Rank words by 12-norms and select most
important and unimportant words

Selected words
studio, president, women, philosophy
Important scandinavian, washingtonian, berliner, championship
defiance, reporting, adjusted, jarred
71.2,5.5, 4m, 296036, 3.5
Unimportant — may, be, all, born
movements, economists, revenues, computers

Selected learned important words in TREC QA. All
words are converted to lower cases.
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Complex-valued Embedding
* Non-linearity

lvory tower = lvory + tower

 Gated Addition

A




Other Potentials

* Interpretability

* Robustnees
* orthogonal projection subspaces (measurements)

 Transferness

» Selecting some measurements is a kind of sampling. More measurements, in principle, lead
to more accurate inference with respect to the given input. (like ensemble strategy)

Reusing the trained measurement from one dataset to another dataset makes sense,
especially that recent works tends to use a given pertained language model to build the
input features



Conclusion & Future Work

« Conclusion
 Interpretability for language understanding
* Quantum-inspired complex-valued network for
matching

Transparent & Post-hoc Explainable
Comparable to strong baselines

e Future Work

 Incorporation of state-of-the-art neural networks

« Experiment on larger datasets



* Contacts
« giuchili@dei.unipd.it
« wang@dei.unipd.it

* Source Code
* github.com/wabyking/gnn
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What the companies care

 How to improve SOTA
* Performance
 Efficiency



Position and order

* Transformer without position embedding is
position-insensitive

A A S
&—[A-[A-[a—[a]
® ® ® - ©

Recurrent Neural Net

Recursive Neural Net Conv seq2seq Transformer
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Encoding order
in complex-valued embedding

P1
P2

P3

Tl —— \
S — \
L) 3 \\ ;/r—— SR
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Efficiency

» Tensor decomposition

output

gz.

parameters
K |a,| vy (Linear J] [(Linear ] (Linear ]  sharing

n n Q K v

Ma et.al. A Tensorized Transformer for Language Modeling, https://arxiv.org/pdf/1906.09777 .pdf



https://arxiv.org/pdf/1906.09777.pdf

Efficiency

Results in language model

Model PTB WikiText-103
Params ValPPL TestPPL Params Val PPL  Test PPL

LSTM+augmented loss [15] 24M 75.7 48.7 - - 48.7
Variational RHN [38] 23M 67.9 65.4 - - 45.2
4-layer QRNN [21] - - - 151IM - 33.0
AWD-LSTM-MoS [36] 22M 58.08 55.97 - 29.0 29.2
Transformer+adaptive input [1]  24M 59.1 57 247 19.8 20.5
Transformer-XL [7] 24M 56.72 54.52 151M 23.1 24.0
Transformer-XL+TT [18] 18M 57.9% 55.4* 130M 23.61* 25.70%*
Tensorized Transformer core-1  12M 60.5 57.9 80.5M  22.7 20.9
Tensorized Transformer core-2  12M 54.25 49.8 86.5M  19.7 18.9

Results and compression with Transformer on WMT-16 English-to-German translation.

Model Params BLEU
Base-line [30] - 26.8
Linguistic Input Featurec [29] - 28.4
Attentional encoder-decoder + BPE [30] - 34.2
Transformer [34] 52M 34.5%
Tensorized Transformer core-1 21IM 34.10
Tensorized Transformer core-2 21.2M 34.91

Ma et.al. A Tensorized Transformer for Language Modeling, https://arxiv.org/pdf/1906.09777 .pdf
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Interpretability

with the connection between tensor and NN

Correspondence between languages of Tensor Analysis and Deep Learning.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network

Khrulkov, Valentin, Alexander Novikov, and Ivan Oseledets. "Expressive power of recurrent neural
networks." arXiv preprint arXiv:1711.00811 (2017). ICLR 2018
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Global Representation

Interpretability (1):

Tensor Vs DL

Local Representation
=" |
- (=D &

(w2 |ws)

Product
~ Pooling

R
~
T=Ztr'er.l®er,2.,.®erﬂ Termrmr s
r=1

I

~ I
|

~ .

|

Text
Sequence

QMWF

Projection
Representation -

Tensor Decomposition Convolutional Neural Network

Zhang P, Su Z, Zhang L, Wang B, Song D. A quantum many-body wave function inspired language modeling approach. In Proceedings of the 27th
ACM CIKM 2018 Oct 17 (pp. 1303-1312). ACM.
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Interpretability (2):
Long-term and short-term

a)

QMWF — LM

Probability
Global 7~ o

Q =/

Local

Iprojection | (lllfs"p3> |

a.1)

pooling-

1x 1 conv |

CNN Network

11l

Wy
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a.2)

TN for a shallow CNN
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a.3

TN for a deep CNN
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b)

dependency
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Interpretability (2):
Long-term and short-term dependency

To

[ =— 1 —+— [ —+— | =+=m.
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Related Works

« Quantum-inspired Information Retrieval (IR) models
* Query Relevance Judgement (QPRP, QMR,...)

Quantum Language Model (QLM) and QLM variants

* Quantum-inspired NLP models

Quantum-theoretic approach to distributional semantics
(Blacoe et al. 2013; Blacoe 2015a; Blacoe 2015b)
NNQLM (Zhang et al. 2018)

Quantum Many-body Wave Function (QMWF) (Zhang et al.
2018)

Tensor Space Language Model (TSLM) (Zhang et al. 2019)
QPDN (Li et al. 2018; Wang et al. 2019)



