

Quantum-Inspired IR/Language Modelling

Qiuchi Li, Benyou Wang University of Padua Toutiao, Beijing, China, 28/06/2019

Relationship with Quantum Computing

Mathematical formulation

Relationship with Quantum Machine Learning

- Classical Machine learning from Quantum, e.g. Boltzmann machine, Gradient decent
- Machine Learning deployed on **Quantum computers**, speed up the classical machine learning algorithms

Quantum theory Outside Physics

Quantum mind/brain/consciousness/cognition

Social science

[E. Haven and A. Khrennikov. 2013. Quantum Social Science. Cambridge University Press.]

Cognition science

 [Jerome R. Busemeyer and Peter D. Bruza. 2013. Quantum Models of Cognition and Decision. Cambridge University Press]

Information retrieval

 [Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio. 2013. Modeling term dependencies with quantum language models for IR. In Proc. of SIGIR. ACM, 653–662.]

• Our works do not rely on quantum cognition

Contents

- History of quantum-inspired IR/NLP
- Basics from Quantum Theory
- Semantic Hilbert Space—NAACL best paper
- Future work with Quantum Theory

Main Researchers

- Massimo Melucci, University of Padova
- Peng Zhang/Yuexian Hou, Tianjin University
- Dawei Song, BIT
- Christina Lioma, University of Copenhagen
- Peter Bruza, Queensland University of Technology
- Van Rijsbergen
- Diedarik Aerts and Andrei Khrennikov, Bruseymer.
- Jian-yun Nie, University of Montreal
- Ingo, lefist, guido zuccon, piwosiki
- SIGIR Shannon award
- ECIR
- ICTIR
- ICITR
- NAACL
- SIGIR
- ICTIR

Quantum IR

 Quantum Formulism can formulate the different IR models (logic, vector, probabilistic, etc.) in a unified framework.

C.J. van Rijsbergen UK Royal Academy of Engineering Fellow SIGIR 2006 Salton Award Lecture

[C.J. van Rijsbergen 2004, Geometry of Information Retreival] [Piwowarski B, et al. What can quantum theory bring to information retrieval. CIKM 2010. 59–68]

Roadmap of Quantum IR formal models

Milestones

Quantum Analogy based IR Methods

Double Slit (Zuccon et al. ECIR 2009)

Photon Polarization (**Zhang**, et al. ECIR 2011, ICTIR 2011)

Pros & Cons:

+ Novel intuitions [ECIR'11 Best Poster Award]

Shallow analogyInconsistent with quantum axioms

Quantum Language Models (QLMs)

Original QLM (Sordoni et al. SIGIR 2013)

QLM variants (Li, Li, **Zhang**, SIGIR 2015) (Xie, Hou*, **Zhang***, IJCAI 2015)

Pros & Cons:

+ Consistent with axioms

- QLM components are designed separately, instead of learned jointly Neural Quantum Language Models

End2end QLM for QA (Zhang et al. AAAI 2018)

Further variants (Zhang et al. Science China 2018)

Pros & Cons:

+ Effective joint learning for Question answering;

- Lacks inherent connection between NN and QLM

- Cannot model complex interaction among words

Credits from Prof. Peng Zhang

Quantum Theory & NN

[1] Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks[J]. **Science**, 2017, 355(6325): 602-606.

[2] Gao X, Duan L M. Efficient representation of quantum many-body states with deep neural networks[J]. **Nature communications**, 2017, 8(1): 662.

[3] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. **Science**, 2018, 361(6406): 1004-1008.

[4] Levine Y, Yakira D, Cohen N, et al. Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design[C]. **ICLR** 2018.

Contents

- History of quantum inspired IR/NLP
- Basics from Quantum Theory
- Semantic Hilbert Space—NAACL best paper
- Future work with Quantum Theory

Basic Dirac notations

Bra & Ket

- **Bra:** < · | like a **row vector**, e.g. < *x* |
- Ket: $|\cdot \rangle$ like a column vector, e.g., $|x \rangle$
- Inner Product

 $\langle x | x \rangle$

Outer Product

 $|x > \langle x|$

Four axioms in Quantum Mechanics

- Axiom 1: State and Superposition
- Axiom 2: Measurements
- Axiom 3: Composite system
- Axiom 4: Unitary Evolution

[Nielsen M A, Chuang I L. 2000]

- Pure State
 Pasis State
 - Basis State

- Pure State
 - Basis State
 - Superposition State

- Pure State
 - Basis State
 - Superposition State
- Mixed State

- Pure State
 - Basis State
 - Superposition State
- Mixed State
- Measurement

Contents

- History of quantum inspired IR/NLP
- Basics from Quantum theory
- Semantic Hilbert Space—NAACL best paper
- Future work with Quantum Theory

Research Problem

- Interpretability issue for NN-based NLP models
 - 1. Transparency: explainable component in the design phase
 - 2. Post-hoc Explainability: why the model works after execution

The Mythos of Model Interpretability, Zachery C. Lipton, 2016

Research questions :

- 1.What is the concrete meaning of a single neutron? And how does it work? (*probability*)
- 2.What did we learning after training? (unifying all the subcomponents in a single space and therefore they can mutually interpret each other)

Inspiration

- Distributed representation
- Understanding a single neutron
- How it works
- What it learned

How to understand distributed representation (word vector)?

Distributed representation vs Superposition state over sememes

Decomposing word vector

- Amplitude vector (unit-length vector)
 - Corresponding weight for each sememe
- Phase vector (each element ranges [0,2Pi])
 - Higher-lever semantic aspect
- Norm
 - Explicit weight for each word.

How to understand the value of a single neutron?

One neutron or a group of neutrons?

Vanilla neutrons

Capsules by Hinton

How does the neural network work?

Driven by probability?

Classical probability: set-based probability theory (countable) events are in a discrete space

Quantum probability: projective geometry based theory (uncountable) events are in a continuous space

Uncertainty in Language/QT

• A single word may have multiple meanings

'Apple

Uncertainty of a pure state

 Multiple words may be combined in different ways

Uncertainty of a mixed state

What did it learn?

How to interpret trainable components?

- A unified quantum view of different levels of linguistic units
 - Sememes
 - Words
 - Word Combinations
 - Sentences

Therefore they can mutually interpret each other

Semantic Hilbert Space

Benyou Wang*, Qiuchi Li*, Massimo Melucci, and Dawei Song. Semantic Hilbert Space for Text Representation Learning. In WWW2019

Complex-valued Network for Matching

Χ

 L2-normed word vectors as superposition states

 Softmax-normalized word L2-norms as mixture weights

Experiment Result

Effectiveness \bullet

- Competitive compared to strong baselines
- Outperforms existing quantum-inspired QA model (Zhang et al. 2018) ٠

Model	MAP	MRR
Bigram-CNN	0.5476	0.6437
LSTM-3L-BM25	0.7134	0.7913
LSTM-CNN-attn	0.7279	0.8322
aNMM	0.7495	0.8109
MP-CNN	0.7770	0.8360
CNTN	0.7278	0.7831
PWIM	0.7588	0.8219
QLM	0.6780	0.7260
NNQLM-I	0.6791	0.7529
NNQLM-II	0.7589	0.8254
CNM	0.7701	0.8591
Over NNQLM-II	1.48% ↑	4.08% ↑

Model	MAP	MRR
Bigram-CNN	0.6190	0.6281
QA-BILSTM	0.6557	0.6695
AP-BILSTM	0.6705	0.6842
LSTM-attn	0.6639	0.6828
CNN-Cnt	0.6520	0.6652
QLM	0.5120	0.5150
NNQLM-I	0.5462	0.5574
NNQLM-II	0.6496	0.6594
CNM	0.6748	0.6864
Over NNQLM-II	3.88%↑	$4.09\%\uparrow$

performing values are in bold.

Experiment Results on TREC QA Dataset. The best Experiment Results on WikiQA Dataset. The best performing values are in bold.

Experiment Result

Ablation Test

- ✓ Complex-valued Embedding
 - non-linear combination of amplitudes and phases
- ✓ Local Mixture Strategy

✓ Trainable Measurement

Setting	MAP	MRR
FastText-MaxPool	0.6659 (0.1042↓)	0.7152 (0.1439↓)
CNM-Real	0.7112 (0.0589↓)	0.7922 (0.0659↓)
CNM-Global-Mixture	0.6968 (0.0733↓)	0.7829 (0.0762↓)
CNM-trace-inner-product	0.6952 (0.0749↓)	0.7688 (0.0903↓)
CNM	0.7701	0.8591

Transparency

Components	DNN	CNM
		basis one-hot vector / basis state
Sememe	-	$\{e e \in \mathcal{R}^n, e _2 = 1\}$
		complete &orthogonal
Word	real vector	unit complex vector / superposition state
word	$(-\infty,\infty)$	$\{w w \in \mathcal{C}^n, w _2 = 1\}$
N-gram/	real vector	density matrix / mixed system
Word combinations	$(-\infty,\infty)$	$\{ ho ho= ho^*, tr(ho)=1$
Abstraction	CNN/RNN	projector / measurement
Adstraction	$(-\infty,\infty)$	$\{vv^T v \in \mathcal{C}^n, v _2 = 1\}$
Sentence	real vector	real value/ measured probability
representation	$(-\infty,\infty)$	(0,1)

Physical meanings and constraints.

 With well-constraint complex values, CNM components can be explained as concrete quantum states at design phase

Post-hoc Explainability

• Visualisation of word weights and matching patterns

Q: Who is the [president or chief executive of Amtrak]? A: ...said George Warrington, [Amtrak 's president and chief executive].

Q: How did [women 's role change during the war]? A: the [World Wars started a new era for women 's] opportunities to...

Semantic Measurements

- Each measurement is a pure state
- Understand measurement via neighboring words

	Selected neighborhood words for a measurement vector
1	andes, nagoya, inter-american, low-caste
2	cools, injection, boiling, adrift
3	andrews, paul, manson, bair
4	historically, 19th-century, genetic, hatchback
5	missile, exile, rebellion, darkness

Selected learned measurements for TREC QA. They were selected according to nearest words for a measurement vector in Semantic Hilbert Space.

Word L2-norms

 Rank words by l2-norms and select most important and unimportant words

	Selected words
	studio, president, women, philosophy
Important	scandinavian, washingtonian, berliner, championship
	defiance, reporting, adjusted, jarred
	71.2, 5.5, 4m, 296036, 3.5
Unimportant	may, be, all, born
_	movements, economists, revenues, computers

Selected learned important words in TREC QA. All words are converted to lower cases.

Complex-valued Embedding

• Non-linearity

lvory tower ≠ lvory + tower

Gated Addition

Other Potentials

- Interpretability
- Robustnees
 - orthogonal projection subspaces (measurements)

Transferness

- Selecting some measurements is a kind of sampling. More measurements, in principle, lead to more accurate inference with respect to the given input. (like ensemble strategy)
- Reusing the trained measurement from one dataset to another dataset makes sense, especially that recent works tends to use a given pertained language model to build the input features

Conclusion & Future Work

- Conclusion
 - Interpretability for language understanding
 - Quantum-inspired complex-valued network for matching
 - Transparent & Post-hoc Explainable
 - Comparable to strong baselines
- Future Work
 - Incorporation of state-of-the-art neural networks
 - Experiment on larger datasets

- Contacts
 - <u>qiuchili@dei.unipd.it</u>
 - <u>wang@dei.unipd.it</u>
- Source Code
 - github.com/wabyking/qnn

Contents

- History of quantum inspired IR/NLP
- Basics from Quantum theory
- Semantic Hilbert Space—NAACL best paper
- Future work with Quantum Theory

What the companies care

- How to improve SOTA
 - Performance
 - Efficiency
 - Interpretability

Position and order

• Transformer without position embedding is position-insensitive

Recursive Neural Net

Conv seq2seq

Transformer

Encoding order in complex-valued embedding

Efficiency

Tensor decomposition

Ma et.al. A Tensorized Transformer for Language Modeling, https://arxiv.org/pdf/1906.09777.pdf

Efficiency

Results in language model

Model	РТВ			WikiText-103		
MOUEI	Params	Val PPL	Test PPL	Params	Val PPL	Test PPL
LSTM+augmented loss [15]	24M	75.7	48.7	_	_	48.7
Variational RHN [38]	23M	67.9	65.4	_	_	45.2
4-layer QRNN [21]	_	_	_	151M	_	33.0
AWD-LSTM-MoS [36]	22M	58.08	55.97	_	29.0	29.2
Transformer+adaptive input [1]	24M	59.1	57	247M	19.8	20.5
Transformer-XL [7]	24M	56.72	54.52	151M	23.1	24.0
Transformer-XL+TT [18]	18 M	57.9*	55.4*	130M	23.61*	25.70*
Tensorized Transformer core-1	12M	60.5	57.9	80.5M	22.7	20.9
Tensorized Transformer core-2	12M	54.25	49.8	86.5M	19.7	18.9

Results and compression with Transformer on WMT-16 English-to-German translation.

Model	Params	BLEU
Base-line [30]	_	26.8
Linguistic Input Featurec [29]	_	28.4
Attentional encoder-decoder + BPE [30]	_	34.2
Transformer [34]	52M	34.5*
Tensorized Transformer core-1	21M	34.10
Tensorized Transformer core-2	21.2M	34.91

Ma et.al. A Tensorized Transformer for Lan	guage Modeling,	https://arxiv.org/	pdf/1906.09777.	pdf

Interpretability with the connection between tensor and NN

Correspondence between languages of Tensor Analysis and Deep Learning.

Tensor Decompositions	Deep Learning
CP-decomposition	shallow network
TT-decomposition	RNN
HT-decomposition	CNN
rank of the decomposition	width of the network

Khrulkov, Valentin, Alexander Novikov, and Ivan Oseledets. "Expressive power of recurrent neural networks." *arXiv preprint arXiv:1711.00811* (2017). ICLR 2018

Interpretability (1): Tensor Vs DL

Zhang P, Su Z, Zhang L, **Wang B**, Song D. A quantum many-body wave function inspired language modeling approach. In Proceedings of the 27th ACM CIKM 2018 Oct 17 (pp. 1303-1312). ACM.

Interpretability (2): Long-term and short-term dependency

Interpretability (2): Long-term and short-term dependency

References

- Li, Qiuchi, Sagar Uprety, Benyou Wang, and Dawei Song. "Quantum-Inspired Complex Word Embedding." *Proceedings of The Third Workshop on Representation Learning for NLP*, 2018, 50-57.
- Wang, Benyou, Qiuchi Li, Massimo Melucci, and Dawei Song. "Semantic Hilbert Space for Text Representation Learning." In *The World Wide Web Conference*, 3293-3299. WWW '19. New York, NY, USA: ACM, 2019.
- Lipton, Zachary C. "The Mythos of Model Interpretability." *Queue* 16, no. 3 (June 2018): 30:31-30:57.
- Peter D Bruza, Kirsty Kitto, Douglas McEvoy, and Cathy McEvoy. 2008. "Entangling words and meaning". *pages QI*, 118-124. College Publications.
- Bruza, P.D., and R.J. Cole. "Quantum Logic of Semantic Space: An Exploratory Investigation of Context Effects in Practical Reasoning." In *We Will Show Them! Essays in Honour of Dov Gabbay*, 1:339-362. London, UK: College Publications, 2005.
- Diederik Aerts and Marek Czachor. "Quantum Aspects of Semantic Analysis and Symbolic Artificial Intelligence." *Journal of Physics A: Mathematical and General* 37, no. 12 (2004): L123.
- Diederik Aerts and L. Gabora. "A Theory of Concepts and Their Combinations: II.: A Hilbert Space Representation." *Kibernetes* 34, no. 1 (2004): 192-221.
- Diederik Aerts and L. Gabora. "A Theory of Concepts and Their Combinations I: The Structure of the Sets of Contexts and Properties." *Kybernetes* 34 (2004): 167-191.
- Diederik Aerts and Sandro Sozzo. "Quantum Entanglement in Concept Combinations." International Journal of Theoretical Physics 53, no. 10 (October 1, 2014): 3587-3603.
- Sordoni, Alessandro, Jian-Yun Nie, and Yoshua Bengio. "Modeling Term Dependencies with Quantum Language Models for IR." In *Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval*, 653-662. SIGIR '13. New York, NY, USA: ACM, 2013.

Thanks!

Related Works

- Quantum-inspired Information Retrieval (IR) models
 - Query Relevance Judgement (QPRP, QMR,...)
 - Quantum Language Model (QLM) and QLM variants
- Quantum-inspired NLP models
 - Quantum-theoretic approach to distributional semantics (Blacoe et al. 2013; Blacoe 2015a; Blacoe 2015b)
 - NNQLM (Zhang et al. 2018)
 - Quantum Many-body Wave Function (QMWF) (Zhang et al. 2018)
 - Tensor Space Language Model (TSLM) (Zhang et al. 2019)
 - QPDN (Li et al. 2018; Wang et al. 2019)