A survey and practice of Neural-network-based Textual representation

WabyWang, LilianWang, JaredWei, LoringLiu
Department of Social Network Operation,
Social Network Group,
Tencent

welcome for any issues and contributions !!!
find . -name "*.py" -print | xargs wc -l

3256 lines
TextZOO
A new Benchmark to Reconsidering Text Classification

Can not do

• Can not directly deploy online
 • Implementing is easy, while design is what really challenging

• Can not tell you the precise hyper-parameter of your task
 • A fish or a fishing skill?

• Can not ensure to improve your performance
 • It depends on the scale of your supervised data
Highly depends on your data and task

- NLP features extraction Model
 - TFIDF is enough strong, e.s. long text
 - A Few pretrained Model
 - Glove/Word2vec only for initialization
 - No common-known CN embedding
 - No pretrained Model

- CV features extraction
 - SIFT or SIFT-like is not very strong.
 - pretrained ResNet from ImageNet

Zero-shot learning can hardly works in NLP, currently
Can do

• Easy to implement a model after talking
 • Talking is cheap, 10 lines a model.

• Directly support all the public dataset
 • Testing model

• Know how to design a DL model for NLP, not only text classification
 • A fishing skill
Contents

• Brief Introduction of TextZoo
• Why text classification?
• General Overview of Text Classification
• Overview of Text Classification in Neural Network approach.
• Architecture of TextZoo
• Conclusions
Contents

• Brief Introduction of TextZoo
• Why text classification?
• General Overview of Text Classification
• Overview of Text Classification in Neural Network approach.
• Architecture of TextZoo
• Conclusions
TextZoo

- Text Classification
 - Sentimental
 - Topic
 - Spam filter
 - ...

- A benchmark
 - 20 Dataset
 - 20 Models

- PyTorch
 - Life is short, I use PyTorch(Python)
Models

✓ FasText
✓ CNN (Kim CNN, Multi-Layer CNN, Multi-perspective CNN, Inception CNN)
✓ LSTM (BILSTM, StackLSTM, LSTM with Attention)
✓ Hybrids between CNN and RNN (RCNN, C-LSTM)
✓ Attention (Self Attention / Quantum Attention)
✓ Transformer - Attention is all you need
✓ Capsule
✓ Quantum-inspired NN
➢ ConS2S
➢ Memory Network
Datasets

- IMDB
- MR
- CR
- MPQA
- SST1
- SST2
- Subj
- TREC
Contents

- Brief Introduction of TextZoo
- Why text classification?
- General Overview of Text Classification
- Overview of Text Classification in Neural Network approach.
- Architecture of TextZoo
- Conclusions
Supervised tasks in NLP

- Classification: assigning a label to a string
 \[S \rightarrow C \]

- Matching: matching two strings
 \[S, t \rightarrow \mathbb{R}^+ \]

- Translation: transforming one string to another
 \[S \rightarrow t \]

- Structured prediction: mapping string to structure
 \[S \rightarrow s' \]
Why text classification?

Text Representation

Text \rightarrow MLP/CNN/RNN \rightarrow representation \rightarrow classification
Why text classification?

Text Representation

- Text
- MLP/CNN/RNN
- representation
- classification

Text Representation

- Text
- MLP/CNN/RNN
- representation

Matching
Why text classification?

Text Representation

Text → MLP/CNN/RNN → representation → classification

MLP/CNN/RNN → Text
Why text classification?

Text Representation

- Token_1
 - RNN cell
 - representation
 - classification

- Token_2
 - RNN cell
 - representation
 - classification

- Token_3
 - RNN cell
 - representation
 - classification
Examples for LSTM

https://mp.weixin.qq.com/s/MhRrVW44dDX-PpWNqCWCOw
Fundamental Demo In Code with PyTorch pseudo code

- Model = LSTM/CNN/Capsule/...
- text,label = Dataset.nextBatch()
- representation = Model(text)

- Classification = FC(representation) \(FC : \) Mapping to label size
- Translation = Decode(representation)
- Matching = Cosine(representation1, representation2)
- Sequential Labelling = FCs(representations)
Contents

• Brief Introduction of TextZoo
• Why text classification?
• General Overview of Text Classification
• Overview of Text Classification in Neural Network approach.
• Architecture of TextZoo
• Conclusions
Overview

• Traditional Models
 • Naïve Bayes
 • SVM

• DL Models
 • ???CNN
 • ???RNN
 • ???NN
Traditional Classification

• SVM/Naïve Bayes
 • Bag-of-words(N-gram) hypothesis
 • Features :
 • TFIDF (unigram, N-gram)
 • POS, parser
 • hypernyms, WordNet
 • hand-coded rules
 • May needs “feature selection”
 • Good performance in long text

It performs better than you expected!!
Contents

• Brief Introduction of TextZoo
• Why text classification?
• General Overview of Text Classification
• Overview of Text Classification in Neural Network approach.
• Architecture of TextZoo
• Conclusions
Embedding and further DL models

Distributional hypothesis

linguistic items with similar distributions have similar meanings

Localist representation

- **BMW** \([1, 0, 0, 0, 0]\) \([.3, .7, .2, .1, .5]\)
- **Audi** \([0, 0, 0, 1, 0]\) \([.5, .3, .2, .1, .0]\)
- **Benz** \([0, 0, 1, 0, 0]\) \([.2, .0, .31, .03, .01]\)
- **Polo** \([0, 0, 0, 1, 0]\) \([.1, .1, .5, .5, 0.2]\)

Distributed representation

<table>
<thead>
<tr>
<th>Car</th>
<th>Representation</th>
<th>Size</th>
<th>Color</th>
<th>...</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td>[1, 0, 0, 0, 0, 0]</td>
<td>[.3, .7, .2, .1, .5]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audi</td>
<td>[0, 0, 0, 1, 0]</td>
<td>[.5, .3, .2, .1, .0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz</td>
<td>[0, 0, 1, 0, 0]</td>
<td>[.2, .0, .31, .03, .01]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polo</td>
<td>[0, 0, 0, 1, 0]</td>
<td>[.1, .1, .5, .5, 0.2]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to get Distributed representation

- **Matrix Factorization**
 - Word-word Matrix
 - Document-word Matrix
 - PLSA
 - LDA
- **Sample-based Prediction**
 - NNLM
 - C & W
 - Word2vec

Glove is a combination between these two schools of approaches
Why embedding is so hot?

• Only automatically build supervised pairs in unsupervised corpus

• *Life is complex. It has both real and imaginary parts*
Word2Vec

The diagram illustrates the architecture of a Word2Vec model. It includes:

- **Softmax classifier**
- **Hidden layer**
- **Projection layer**

The model takes a sentence as input, processes it through layers, and outputs a vector representation for each word. The goal is to learn vector representations that capture the semantic meaning of words.
State-of-art Embedding

• Word2Vec
• Glove
• Many and many improved version of word embedding
 • Improved Word Representation Learning with Sememes
 • “Polysemy problem”
 • “Antonym problem”
 • Complex embedding [We are interested, now]
 • life is complex, it has both real and imaginary parts
Which is the most similar word of “Tencent”?

May be “Baidu” or “pony”?

Nie Janyun said in SIGIR 2016 Chinese-Author Workshop, Tsinghua University, Beijing
Attention!!!

Average Embedding may be a problematic practice for textual representation, especially in long text.

Should add some *supervised signals* after embedding to reduce the noise !, like *Fastext*

Embedding is everywhere!!!

- Word2vec
- Doc2vec
- Item2vec
- *Everything can be embed!!*

Embedding is a kind of approach, while **word vector** is a typical application of embedding.

How to choose Word Vector

• Word2vec or Glove
 • Depends on you final performance, not a prior test in linguistic/syntax regulation

• Embedding dim, depends on scale of training dataset.
 • Larger dataset, bigger dimension, but overfitting.

• If possible, train the embedding on own your data.
 Topic-relevant is somehow more important than the data size
More features in DL

• POS Embedding
• CCG Embedding
• Extract matching Embedding
• Position Embedding

• Embed Every discrete features in Neural Network
 • If it is continuous, bucket it and make it discrete.
MLP
UAT in MLP

Multi-layer Non-linear Mapping \to **Universal Approximation Theorem**
A sample of $\theta(wx+b)$

\[w = 100 \quad b = -40 \]

\[\sigma(wx + b), \text{ where } \sigma(z) \equiv 1/(1 + e^{-z}) \]

\[s = -b/w. \]

An another sample

\[\sigma(wx + b), \text{ where } \sigma(z) \equiv \frac{1}{1 + e^{-z}} \]
CNN

• Basic CNN
• Kim CNN
• VDCNN
CNN [Kalchbrenner et al. ACL 2014]
CNN [kim EMNLP 2014]

Figure 1: Model architecture with two channels for an example sentence.
Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N. The features are embedded and averaged to form the hidden variable.
Why Mr. Lace chooses FasText

• Fast
• Input may a set of keywords instead of a sequential of words
 • (Group name)
• Label may be inaccurate

• Build more hand-code features would get comparable results
Very Large CNN [Conneau EACL]

Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data augmentation technique (marked with an *). Yang et al. (2016)’s hierarchical methods is particularly adapted to datasets whose samples contain multiple sentences.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Pooling</th>
<th>AG</th>
<th>Sogou</th>
<th>DBP</th>
<th>Yelp P</th>
<th>Yelp F</th>
<th>Yah. A</th>
<th>Amz. F</th>
<th>Amz. P</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Convolution</td>
<td>10.17</td>
<td>4.22</td>
<td>1.64</td>
<td>5.01</td>
<td>37.63</td>
<td>38.10</td>
<td>38.52</td>
<td>4.94</td>
</tr>
<tr>
<td>9</td>
<td>KMaxPooling</td>
<td>9.83</td>
<td>3.58</td>
<td>1.56</td>
<td>5.27</td>
<td>38.04</td>
<td>38.24</td>
<td>39.19</td>
<td>5.69</td>
</tr>
<tr>
<td>9</td>
<td>MaxPooling</td>
<td>9.17</td>
<td>3.70</td>
<td>1.35</td>
<td>4.88</td>
<td>36.73</td>
<td>37.95</td>
<td>37.95</td>
<td>4.70</td>
</tr>
<tr>
<td>17</td>
<td>Convolution</td>
<td>9.29</td>
<td>3.94</td>
<td>1.42</td>
<td>4.96</td>
<td>36.10</td>
<td>37.35</td>
<td>37.50</td>
<td>4.53</td>
</tr>
<tr>
<td>17</td>
<td>KMaxPooling</td>
<td>9.39</td>
<td>3.51</td>
<td>1.61</td>
<td>5.05</td>
<td>37.41</td>
<td>38.25</td>
<td>38.81</td>
<td>5.43</td>
</tr>
<tr>
<td>17</td>
<td>MaxPooling</td>
<td>8.88</td>
<td>3.54</td>
<td>1.40</td>
<td>4.50</td>
<td>36.07</td>
<td>37.51</td>
<td>37.39</td>
<td>4.41</td>
</tr>
<tr>
<td>29</td>
<td>Convolution</td>
<td>9.36</td>
<td>3.61</td>
<td>1.36</td>
<td>4.35</td>
<td>35.28</td>
<td>37.17</td>
<td>37.58</td>
<td>4.28</td>
</tr>
<tr>
<td>29</td>
<td>KMaxPooling</td>
<td>8.67</td>
<td>3.18</td>
<td>1.41</td>
<td>4.63</td>
<td>37.00</td>
<td>37.16</td>
<td>38.39</td>
<td>4.94</td>
</tr>
<tr>
<td>29</td>
<td>MaxPooling</td>
<td>8.73</td>
<td>3.36</td>
<td>1.29</td>
<td>4.28</td>
<td>35.74</td>
<td>37.57</td>
<td>37.00</td>
<td>4.31</td>
</tr>
</tbody>
</table>

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.

Figure 1: VDCNN architecture.
Go deeper or not?

DEEP
- Slower
- Overfitting
 - More Parameters, more data need to feed
- Hard for convergence
 - Highway network
 - Residual Block
 - Inception

Shallow: one-layer
- Fast
- Less data, es. Fastext
Go deeper or not?

Image recognition: Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

Text: Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Speech: Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Modified from Prof. LeCun and Prof. Bengio
RNN and its Variant

- RNN
- LSTM
- LSTM + mean
- LSTM + bidirectional
- LSTM + Attention
- LSTM + Stack
- LSTM + Self-Attention
- TreeLSTM
Bias in RNN
Bias in RNN
From RNN to LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
• How many gates?
• Difference between cell and the hidden state?
• How many parameters in a LSTM?
Forget gate

\[f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right) \]
Input gate

\[i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) \]

\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

replace tanh with softsign (not softmax) activation for prevent overfitting

https://zhuanlan.zhihu.com/p/21952042
Forgotten + input

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]
Output Gate

\[o_t = \sigma (W_o [h_{t-1}, x_t] + b_o) \]
\[h_t = o_t \ast \tanh (C_t) \]
LSTM Variants: Peephole connections

\[
f_t = \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f)
\]
\[
i_t = \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i)
\]
\[
o_t = \sigma (W_o \cdot [C_t, h_{t-1}, x_t] + b_o)
\]
LSTM Variants: coupled forget and input gates

\[C_t = f_t \cdot C_{t-1} + (1 - f_t) \cdot \tilde{C}_t \]
LSTM Variants: GRU

$z_t = \sigma (W_z \cdot [h_{t-1}, x_t])$

$r_t = \sigma (W_r \cdot [h_{t-1}, x_t])$

$\tilde{h}_t = \tanh (W \cdot [r_t \cdot h_{t-1}, x_t])$

$h_t = (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t$

✓ Hidden = Cell
✓ Forget gate + input gate =1
BiLSTM

Output Layer

Backward Layer

Forward Layer

Input Layer
Last or Mean?
RNN/LSTM with Attention

https://www.jianshu.com/p/4fbc4939509f
Visualization of Attention in RNN/LSTM

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.
A woman holding a clock in her hand.
A man wearing a hat and a hat on a skateboard.
A person is standing on a beach with a surfboard.
A woman is sitting at a table with a large pizza.
A man is talking on his cell phone while another man watches.
Visualization of Attention in RNN/LSTM

(a) Hypothesis: A boy is riding an animal.
(b) Hypothesis: A girl is wearing a blue jacket.
(c) Hypothesis: Two dogs swim in the lake.
(d) Hypothesis: Two mimes sit in complete silence.

Sematic Entailment

Speech Recognition
Deeper LSTM
Deeper LSTM

Deep is not necessary, but more data!!!
Comparative Study of CNN and RNN for Natural Language Processing

<table>
<thead>
<tr>
<th>TextC</th>
<th>performance</th>
<th>lr</th>
<th>hidden</th>
<th>batch</th>
<th>semLen</th>
<th>filter</th>
<th>size</th>
<th>margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SentiC (acc)</td>
<td>CNN 82.38</td>
<td>0.2</td>
<td>20</td>
<td>5</td>
<td>60</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU 86.32</td>
<td>0.1</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 84.51</td>
<td>0.2</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RC (F1)</td>
<td>CNN 68.02</td>
<td>0.12</td>
<td>70</td>
<td>10</td>
<td>20</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU 68.56</td>
<td>0.12</td>
<td>80</td>
<td>100</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 66.45</td>
<td>0.1</td>
<td>80</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TE (acc)</td>
<td>CNN 77.13</td>
<td>0.1</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU 78.78</td>
<td>0.1</td>
<td>50</td>
<td>80</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 77.85</td>
<td>0.1</td>
<td>80</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SemMatch</td>
<td>CNN (63.69, 65.01)</td>
<td>0.01</td>
<td>30</td>
<td>60</td>
<td>40</td>
<td>3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS (MAP & MRR)</td>
<td>GRU (62.58, 63.59)</td>
<td>0.1</td>
<td>80</td>
<td>150</td>
<td>40</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>LSTM (62.00, 63.26)</td>
<td>0.1</td>
<td>60</td>
<td>150</td>
<td>45</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>QRM (acc)</td>
<td>CNN 71.50</td>
<td>0.125</td>
<td>400</td>
<td>50</td>
<td>17</td>
<td>5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU 69.80</td>
<td>1.0</td>
<td>400</td>
<td>50</td>
<td>17</td>
<td>-</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 71.44</td>
<td>1.0</td>
<td>200</td>
<td>50</td>
<td>17</td>
<td>-</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>SeqOrder</td>
<td>CNN 54.42</td>
<td>0.01</td>
<td>250</td>
<td>50</td>
<td>5</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU 55.67</td>
<td>0.1</td>
<td>250</td>
<td>50</td>
<td>5</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 55.39</td>
<td>0.1</td>
<td>300</td>
<td>50</td>
<td>5</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>ContextDep</td>
<td>CNN 94.18</td>
<td>0.1</td>
<td>100</td>
<td>10</td>
<td>60</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>POS tagging (acc)</td>
<td>GRU 93.15</td>
<td>0.1</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM 93.18</td>
<td>0.1</td>
<td>200</td>
<td>70</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi-GRU 94.26</td>
<td>0.1</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi-LSTM 94.35</td>
<td>0.1</td>
<td>150</td>
<td>5</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
RNN vs CNN

- RNN
 - 序列结构
 - 强调高阶关系
 - 位置跳跃的依赖

- 速度
 - 更慢，串行
 - 方便定长，通过attention

- CNN
 - 两个句子关系
 - N-gram匹配更重要的match场景
 - 局部依赖关系

- 速度
 - 可以并行，更灵活
 - 输出不定长，跟文本长度有关
CNN vs RNN vs their Hybrids

<table>
<thead>
<tr>
<th>Neural Network Model</th>
<th>Avg. Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed-Forward (Word Embeddings) [1]</td>
<td>58.4%</td>
</tr>
<tr>
<td>Feed-Forward (Feature Vectors) [1]</td>
<td>66.8%</td>
</tr>
<tr>
<td>CNN</td>
<td>66.7%</td>
</tr>
<tr>
<td>LSTM</td>
<td>72.5%</td>
</tr>
<tr>
<td>CNN-LSTM</td>
<td>69.7%</td>
</tr>
<tr>
<td>LSTM-CNN</td>
<td>75.2%</td>
</tr>
</tbody>
</table>

http://blog.csdn.net/youngair/article/details/78013352

Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
From a Industrial perspective

• Add **features**.
• **Understanding** your data: pay more attention on data **preparation**.
• **Parameter** adjusting with a robust setting
 • *Oh, overfit*
• **Model** is not very important, especially data is not low-quality.
 • *Models differs slightly in low-quality data.*
• Trade-off between performance and **efficiency**
 • *For example, multi-size kennels is better but slower!*
Related Models

• Do not directly aims at this task, but also aims to build a text representation.
 • ConvS2S
 • Attention is all you need
 • Dynamic Memory Network
Conv S2S
Attention is all you need

Figure 1: The Transformer - model architecture.
Self-Attention

Figure 1: A sample model structure showing the sentence embedding model combined with a fully connected and softmax layer for sentiment analysis (a). The sentence embedding M is computed as multiple weighted sums of hidden states from a bidirectional LSTM (h_1, \ldots, h_n), where the summation weights (A_{11}, \ldots, A_{1n}) are computed in a way illustrated in (b). Blue colored shapes stand for hidden representations, and red colored shapes stand for weights, annotations, or input/output.
Dynamic Memory Network
Other models

• Tree-LSTM
• Pointer networks
• Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Modeling (T. Shen et al., ICLR 2018)
• Directional Self-Attention Network
• Recurrent Entity Network
Char-CNN

Component-Enhanced Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. Component-Enhanced Chinese Character Embeddings. Proceedings of EMNLP, 201
Char-word Hybrids

Combining Word-Level and Character-Level Representations for Relation Classification of Informal Text
Long text/document classification

- Hierarchical Attention Networks (HAN)
Multi-task Learning

Adversarial Multi-task Learning

RL for text classification

• Learning Structured Representation for Text Classification via Reinforcement Learning AAAI 2018 minlieHuang

<table>
<thead>
<tr>
<th>Models</th>
<th>MR</th>
<th>SST</th>
<th>Subj</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>77.4*</td>
<td>46.4*</td>
<td>92.2</td>
<td>90.9</td>
</tr>
<tr>
<td>biLSTM</td>
<td>79.7*</td>
<td>49.1*</td>
<td>92.8</td>
<td>91.6</td>
</tr>
<tr>
<td>CNN</td>
<td>81.5*</td>
<td>48.0*</td>
<td>93.4*</td>
<td>91.6</td>
</tr>
<tr>
<td>RAE</td>
<td>76.2*</td>
<td>47.8</td>
<td>92.8</td>
<td>90.3</td>
</tr>
<tr>
<td>Tree-LSTM</td>
<td>80.7*</td>
<td>50.1</td>
<td>93.2</td>
<td>91.8</td>
</tr>
<tr>
<td>Self-Attentive</td>
<td>80.1</td>
<td>47.2</td>
<td>92.5</td>
<td>91.1</td>
</tr>
<tr>
<td>ID-LSTM</td>
<td>81.6</td>
<td>50.0</td>
<td>93.5</td>
<td>92.2</td>
</tr>
<tr>
<td>HS-LSTM</td>
<td>82.1</td>
<td>49.8</td>
<td>93.7</td>
<td>92.5</td>
</tr>
</tbody>
</table>
Adversarial Training Methods For Semi-supervised Text Classification

Table 2: Test performance on the IMDB sentiment classification task. * indicates using pretrained embeddings of CNN and bidirectional LSTM.

<table>
<thead>
<tr>
<th>Method</th>
<th>Test error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (without embedding normalization)</td>
<td>7.33%</td>
</tr>
<tr>
<td>Baseline</td>
<td>7.39%</td>
</tr>
<tr>
<td>Random perturbation with labeled examples</td>
<td>7.20%</td>
</tr>
<tr>
<td>Random perturbation with labeled and unlabeled examples</td>
<td>6.78%</td>
</tr>
<tr>
<td>Adversarial</td>
<td>6.21%</td>
</tr>
<tr>
<td>Virtual Adversarial</td>
<td>5.91%</td>
</tr>
<tr>
<td>Adversarial + Virtual Adversarial</td>
<td>6.09%</td>
</tr>
<tr>
<td>Virtual Adversarial (on bidirectional LSTM)</td>
<td>5.91%</td>
</tr>
<tr>
<td>Adversarial + Virtual Adversarial (on bidirectional LSTM)</td>
<td>6.02%</td>
</tr>
<tr>
<td>Full+Unlabeled+BoW (Maas et al., 2011)</td>
<td>11.11%</td>
</tr>
<tr>
<td>Transductive SVM (Johnson & Zhang, 2015b)</td>
<td>9.99%</td>
</tr>
<tr>
<td>NBSVM-bigrams (Wang & Manning, 2012)</td>
<td>8.78%</td>
</tr>
<tr>
<td>Paragraph Vectors (Le & Mikolov, 2014)</td>
<td>7.42%</td>
</tr>
<tr>
<td>SA-LSTM (Dai & Le, 2015)</td>
<td>7.24%</td>
</tr>
<tr>
<td>One-hot bi-LSTM* (Johnson & Zhang, 2016b)</td>
<td>5.94%</td>
</tr>
</tbody>
</table>

• ICLR 2017
To-do List

• Support more datasets, especially in Chinese
• Support more models
• Fine-tune the result.
• Installable Library with Python (Pip)