

Dynamic content monitoring and exploration using vector spaces

Benyou Wang

University of Padua Supervised by Massimo Melucci and Emanuele Di Buccio SIGIR DC, Paris, France, 07/2019

Dynamics

- Sequential data
- Language model and Language generation
- Historical corpora (Google book, ArXiv paper collections)
- Conversation/dialogue
- Recommendation with historical interactions
- Video tracking
- Electrical Healthy records

Focusing on **textual** problem

Taxonomy in textual applications

Eisenstein, Jacob. "Measuring and Modeling Language Change." *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials.* 2019.

Why vector spaces?

- Well-defined properties of vector space and it is naturally used in IR (VSM in IR).
- Representing words in vector space is a commonly-used paradigm in textual problems [1]

Currently, there is some shortage in modelling dynamic aspects in vector space

[1] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." *arXiv preprint arXiv:1301.3781* (2013).

Methods

Inner dynamics

- □ In-between dynamics
- □ high-dimensional dynamics

- ✓ Sequence-sensitive vector space
- ✓ Evolved vector space
- ✓ Extended high-dimensional vector space

Inner dynamics - Encoding order for a single vector

• Problems: position-sensitive vector **without** recurrent architectures

Inner dynamics - Encoding order for a single vector

Previous methods : Position Embedding (PE) + Word Embedding (WE) $f: (N, N) \rightarrow \mathbb{R}^k$, e.g., $PE(pos_i) + WE(w_j)$ or $[PE(pos_i); WE(w_j)]$

Extending embedding from a **vector** to a **continuous function** over variable the position (pos)

Technically,
$$f: (N, N) \rightarrow R^k$$
 To $f: (N) \rightarrow G\{g; g: N \rightarrow R^k\}$
Word index position index

Now the question becomes *how to decide the function*

Properties for f

Now, for a specific word w, we have to get its embedding over all the positions, namely a function $g_w: N \to \mathbb{R}^k$

Property 1: Invariant relative-distance transformation With the any linear transformation f_{ij} , s. t. $f_{ij}(g_w(pos_i)) = g_w(pos_j)$, one should know whether pos_i is in front of pos_j , as well as how far is between pos_i and pos_j , no matter how big **pos**_i and **pos**_j is.

Property 2: Boundedness The function g_w should be bounded, in order to model long-enough sentence

Encoding order in complex embedding

The **only** solution of $g_w: N \to \mathbb{R}^k$ to meet the previous properties is $g_w(pos) = WE_w \odot e^{i \cdot pos \cdot \lambda}$

For the k-th dimension, $[g_w(pos)]_k = \mathbf{W}\mathbf{E}_{\mathbf{w},\mathbf{k}} \cdot e^{\mathbf{i} \cdot period_k \cdot pos}$ With Euler' formula, we can get

 $[g_w(pos)]_k = WE_{w,k} \cdot [\cos(period_k \cdot pos) + i \sin(period_k \cdot pos)]$

Methods

- Inner dynamics
- □ In-between dynamics
- □ high-dimensional dynamics

- ✓ Sequence-sensitive vector space
- ✓ Evolved vector space
- Extended high-dimensional vector space

Quantum probability

- Classical probability
 - Set-based probability theory
 - Events are limited to be discrete and mutually-exclusive
- Quantum probability
 - Projective geometry based probability theory
 - Events, which is defined in a complex continuous

vector space, can be represented as arbitrary vector

O

1

Density matrix in vector space

Li, Qiuchi *, Benyou Wang *, and Massimo Melucci. "CNM: An Interpretable Complex-valued Network for Matching." NAACL. 2019. Best explainable NLP paper

Evolved density matrix

$$() \rho_{t_{k-1}}$$

$$() \rho_{t_k}$$

$$() \rho_{t_k}$$

$$() \rho_{t_{k+1}}$$

 $\rho_{t_{k+1}} = u \rho_{t_k} u^*,$ where u is unitary $\frac{d \rho_{t_k}}{dt} = f(\rho, t_k)$

Historical corpora Dialogue system

I.

Advantages of Evolved density matrix

- Better interpretability from quantum probability [1]
- Better optimization based on unitary transformation [2]
- Linking with neural (Schrödinger) differential equation [3]

[1] Li, Qiuchi *, **Benyou Wang ***, and Massimo Melucci. "CNM: An Interpretable Complex-valued Network for Matching." NAACL. 2019. **Best explainable NLP paper**

[2] Arjovsky, Martin, Amar Shah, and Yoshua Bengio. "Unitary evolution recurrent neural networks." ICML. 2016.

[3] Chen, Tian Qi, et al. "Neural ordinary differential equations." *NIPS*. 2018.

Future works

• Investigating the dynamic aspects in highdimensional vector space, i.e., tensor space

Correspondence between languages of Tensor Analysis and Deep Learning.

Tensor Decompositions	Deep Learning
CP-decomposition	shallow network
TT-decomposition	RNN
HT-decomposition	CNN
rank of the decomposition	width of the network

Cohen, Nadav, Or Sharir, and Amnon Shashua. "On the expressive power of deep learning: A tensor analysis." *COLT*. 2016. Khrulkov, Valentin, Alexander Novikov, and Ivan Oseledets. "Expressive power of recurrent neural networks." *arXiv preprint arXiv:1711.00811* (2017). ICLR 2018

Publications

- 1. Qiuchi Li*, Benyou Wang*, Massimo Melucci. A Complex-valued Network for Matching. NAACL 2019, Best Explainable NLP Paper
- 2. Benyou Wang*, Qiuchi Li*, Massimo Melucci, Dawei Song. Semantic Hilbert Space for Text Representation Learning. WWW 2019
- 3. Wei Zhao*, **Benyou Wang***, Min Yang, Jianbo Ye, Zhou Zhao, Xiaojun Chen, Ying Shen.. Leveraging Long and Short-term Information in Content-aware Movie Recommendation via Adversarial Training. **IEEE Transactions on Cybernetics** (TOC), 2019
- 4. Peng Zhang, Zhan Su, Lipeng Zhang, Benyou Wang, Dawei Song. 2018. A Quantum Many-body Wave Function Inspired Language Modeling Approach. CIKM 2018
- 5. Wei Zhao, **Wang Benyou**, Jianbo Ye, Yongqiang Gao, Min Yang, Xiaojun Chen, PLASTIC: Prioritize Long and Short-term Information in Top-n Recommendation using Adversarial Training, **IJCAI 2018**
- 6. Wei Zhao, Wang Benyou, Jianbo Ye, Min Yang, Zhou Zhao, Ruotian Luo, Yu Qiao A Multi-task Learning Approach for Image Captioning, IJCAI 2018
- 7. Zhang Peng, Niu Jiabing, Su Zhan, Wang Benyou et al. End-to-End Quantum-like Language Models with Application to Question Answering AAAI 2018
- 8. Wang Jun, Yu Lantao, Zhang Weinan, Gong Yu, Xu Yinghui, **Wang Benyou**, Zhang Peng, Zhang Dell. IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. **SIGIR 2017. Best Paper Award Honourable Mentions**.
- 9. Huang Xin, Wei zhao, Wang Benyou, Rui Zhao. Recommendation System and Deep Learning, Tsinghua University Press, in Chinese.

Thanks