

UNIVERSITY OF PADOVA

H2020-MSCA-ITN Grant Agreement N. 721321

Dynamic Content Monitoring and Exploration using Vector Spaces (ESR-2)

Benyou Wang

University of Padua

QUARTZ workshop, Copenhagen

03/04/2019

Vision

Representing and interpreting language inspired by Quantum Theory

State-of-the-art Paradigm for Language

Benyou Wang, Emanuele Di Buccio, Massimo Melucci. Representing Words in Vector Space and Beyond. Submitted to one Springer chapter organized by Andrei Khrennikov.

State-of-the-art Paradigm for Language

Benyou Wang, Emanuele Di Buccio, Massimo Melucci. Representing Words in Vector Space and Beyond. Submitted to one Springer volume edited by Aerts, Khrennikov and Melucci.

Concerns (1) - Representation

Concerns (1) - Representation

https://pseudoprofound.wordpress.com/2016/06/20/recursive-not-recurrent-neural-nets-in-tensorflow/ Gehring, Jonas, et al. "Convolutional sequence to sequence learning." *ICML* 2017. Vaswani, Ashish, et al. "Attention is all you need." NIPS 2017.

Concerns (2) - Interpretation

Kids store **1.5 megabytes** of information to master their native language ?

How to compose a sequence of word Abstraction How to represent a single word? Feature NNLM Feature NNLM W2V BERT Glove ELMO Distributional hypothesis

So complicated !!!

How to interpret/understand this empirical framework with a more robust way, like from a Mathematical/Physical perspective?

https://news.berkeley.edu/2019/03/27/younglanguagelearners/

Contents

- Representations: Towards Complex-valued word embedding
 - Limitation of the Distributional Hypothesis
 - Sentiment-aware Complex word embedding
 - Extending sequential abstraction
 - Encoding **position** in Complex word embedding
- Interpretation: From higher-dimensional Hilbert Space
 - Rethinking the neural network based NLP Paradigm in Tensor perspective

Semantic Hilbert Space

Benyou Wang*, Qiuchi Li*, Massimo Melucci, Dawei Song. Semantic Hilbert Space for Text Representation Learning. **WWW 2019** Qiuchi Li*, **Benyou Wang***, Massimo Melucci. CNM, a Complex-valued Matching Network for Matching. NAACL **2019**

H2020-MSCA-ITN Grant Agreement N. 721321

Sentiment-aware complex word embedding

sentiment classifications $|w\rangle = \sum_{i=0} r_j e^{-i\theta_i} |e_j\rangle$ Word polarity classification for a single word $\{|e_j\rangle\}_{j=0}^{100}$ = is a one-hot vectors, θ_1 e.g., $e_2 = \begin{vmatrix} 0 \\ 1 \\ 0 \\ ... \\ 0 \\ 0 \end{vmatrix}$ and $e_3 = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix}$ r_2 θ_2 r_2 θ_2 phase Amplitude embedding ... embedding r_{k-2} θ_{k-2} θ_{k-1} θ_k They can be considered as sememes in Linguistics Complex-valued word embedding

The idea was discussed with Qiuchi Li, Sagar Uprety and Chen Zhang.

General textual problems like

Position-aware complex word embedding

 I
 Love
 1st position

 ...
 Copenhagen
 Ist position

 Word
 Position
 Imbedding

Position embedding in Conv Seq2seq [1]

"I love Copenhagen"

Position embedding in Transformer[2]

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Do not need training !!!

We proved that the position embedding in Transformer can be **derived from Complex-valued word embedding**

[1] Gehring, Jonas, et al. "Convolutional sequence to sequence learning." *ICML* 2017.[2] Vaswani, Ashish, et al. "Attention is all you need." NIPS 2017.

The idea was discussed with Donghao Zhao and Qiuchi Li.

Position-aware complex word embedding

Word in different position has different phase, resulting in different word embedding

https://gist.github.com/wabyking/83ab87327e707b3e2834e2f37cac6bcf is used to draw the figure The idea was discussed with Donghao Zhao and Qiuchi Li.

H2020-MSCA-ITN Grant Agreement N. 721321

Contents

- Representations: Towards Complex-valued word embedding
 - Limitation of the Distributional Hypothesis
 - Sensitive-aware Complex word embedding
 - Extending sequential abstraction
 - Encoding **position** in Complex word embedding
- Interpretation: From higher-dimensional Hilbert Space
 - Rethinking the neural network based NLP Paradigm in tensor perspective

What is tensor?

The number of publications on tensor increases exponentially over recent years;

Tensor is everywhere— find the third and higher dimensions

- **Modality** : Multi-modal Data
 - $[x_{image}, x_{text}, x_{sound}, ...]$ where x is the feature matrix or $H_{image} \otimes H_{text} \otimes H_{sound} \otimes ...$
- Time : Time-series Arxiv paper collections
 - $[D_{t1}, D_{t2}, \dots D_T]$, where D is the word-word co-occurrence matrix
- **Domain**: Multiple-domain wiki pages
 - $[D_{nature}, D_{science}, ..., D_{engineering}]$, where D is the word-word co-occurrence matrix
- Word sequence: text
 - $H_I \otimes H_{Love} \otimes H_{Copenhagen} \otimes \cdots \otimes H_{\sim}$
- Relation : hyperlink data (anchor text as the relation)
 - $H_{source} \otimes H_{relation} \otimes H_{target}$
- **Cross-feature regression :** regression with x features
 - Hypotheses space for a general regression model:

$$H_{y} = b + \sum_{i \in N} b_{i} x_{i} + \sum_{i,j \in N} b_{i,j} x_{i,j} + \dots + \sum_{i,j \in N} b_{i,j,\dots,k} x_{i,j,\dots,k}$$

Tensor representation in Text

• Generally speaking, $|V| \gg k$

Hypotheses space with tensor representation

Hypotheses space for a specific label y, with a sentence S

 $H_y(|\Phi_s\rangle) = < W, |\Phi_s\rangle >$

Where $\langle \cdot, \cdot \rangle$ is inner product, which denotes a sum of element-wise multiplication. W is a tensor, which has the dimension with $|\Phi_s\rangle$, including weights/coefficient for features $|\Phi_s\rangle$

> Attention !!! *W* is $R^{|V|^N}$ in one-hot word tensor representation or R^{k^N} for distributed word tensor representation We need to decompose it, in order to calculate $H_y(|\Phi_s\rangle)$

Tensor Decomposition

Tensor train (TT) Decomposition

Tensors are decomposed to a **sequential multiplication of some 3-order tensors**

CP Decomposition for distributed text tensor

Zhang P, Su Z, Zhang L, Wang B, Song D. A quantum many-body wave function inspired language modeling approach. In Proceedings of the 27th ACM CIKM 2018 Oct 17 (pp. 1303-1312). ACM.

TT-Decomposition for one-hot text tensor

A computing demo of $H_y(|\Phi_s\rangle)$, if $|\Phi_s\rangle$ is one-hot

It can be rewritten as

 $H_y(|\Phi_s\rangle) = \langle W, |\Phi_s\rangle = v_{start} M_{w_1}^{(1)} * M_{w_1}^{(2)} * M_{w_1}^{(3)} * ... M_{w_1}^{(n)} v_{end}$ After sharing the weights in different positions, we have

 $H_{\mathcal{Y}}(|\Phi_s\rangle) = \langle W, |\Phi_s\rangle = v_{start}M_{w_1}*M_{w_1}*M_{w_1}*...M_{w_1}v_{end}$ Which admits a map $f: N \to R^{r*r}$, i.e., map a word index to a matrix

Research Activities

- Recent activities
 - Courses in University of Padova, like Applied Functional Analysis.
 - English course including speaking, grammar and listening.
 - Publications:
 - 1. Qiuchi Li*, **Benyou Wang***, Massimo Melucci. A Complex-valued Network for Matching. **NAACL 2019 (oral presentation)**
 - Benyou Wang*, Qiuchi Li*, Massimo Melucci, Dawei Song. Semantic Hilbert Space for Text Representation Learning. WWW 2019 (short paper)
 - 3. Wei Zhao*, **Benyou Wang***, Min Yang, Jianbo Ye, Zhou Zhao, Xiaojun Chen, Ying Shen. Leveraging Long and Short-term Information in Content-aware Movie Recommendation via Adversarial Training. **IEEE Transactions on Cybernetics (TOC), 2019**
- The following research activities:
 - Conferences : I will attend the **WWW 2019** and **NAACL 2019** if visa can be ready
 - August October 2019 : Secondment in University of Copenhagen
 - October December 2019 : Secondment in University of Montreal

