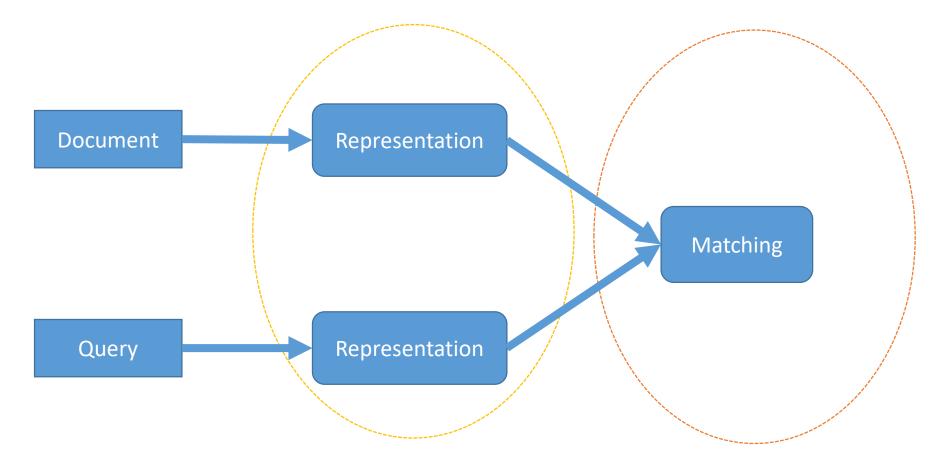
Representations and their Matching

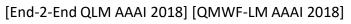

Overview of my research

Benyou Wang

Supervised by Prof. Massimo Melucci

Examples for Representation & Matching

Refer to Benyou wang's homepage, https://wabyking.github.io/talks/textzoo.pdf


Key concerns

• How to build a good representation

- Language model
- Neural representation
- Multi-modality

How to make a good matching

- Ad hoc retrieval
- Question Answering
- GAN for Matching
- Recommendation
- Customer Service
- Tools
 - Quantum Concepts or Quantum-inspired method
 - GAN/Multitask/DNN/Eye tracking

[Complex Word Embedding ACL 2018][TextZoo Arxiv 2018][Quantum Attention]

[Image caption IJCAI2018][Sentimental analysis TCS]

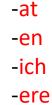
[Quantum Query Expansion Entropy 2018]

[End-2-End QLM AAAI 2018]

[IRGAN SIGIR 2017]

[Long + short-term Profile IJCAI 2018]

[QA NLPCC 2016&NLPCC 2018]



Faster language model with CNN

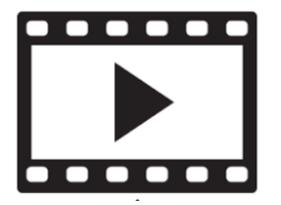
Model	Test PPL	Hardware
Sigmoid-RNN-2048 (Ji et al., 2015)	68.3	1 CPU
Interpolated KN 5-Gram (Chelba et al., 2013)	67.6	100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2014)	52.9	-
RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013)	51.3	24 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016)	43.7	32 GPUs
2-layer LSTM-8192-1024 (Jozefowicz et al., 2016)	30.6	32 GPUs
BIG GLSTM-G4 (Kuchaiev & Ginsburg, 2017)	23.3*	8 GPUs
LSTM-2048 (Grave et al., 2016a)	43.9	1 GPU
2-layer LSTM-2048 (Grave et al., 2016a)	39.8	1 GPU
GCNN-13	38.1	1 GPU
GCNN-14 Bottleneck	31.9	8 GPUs

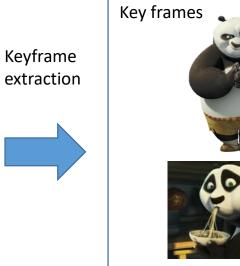
Yin W, Kann K, Yu M, et al. Comparative study of cnn and rnn for natural language processing[J]. arXiv preprint arXiv:1702.01923, 2017. <u>https://github.com/wabyking/Gated_CNN_for_language_Modeling</u>, Dauphin Y N, Fan A, Auli M, et al. Language Modeling with Gated Convolutional Networks. **ICML 2017**: 933-941.

TextZOO [Benyou et.al Arkiv 2018]

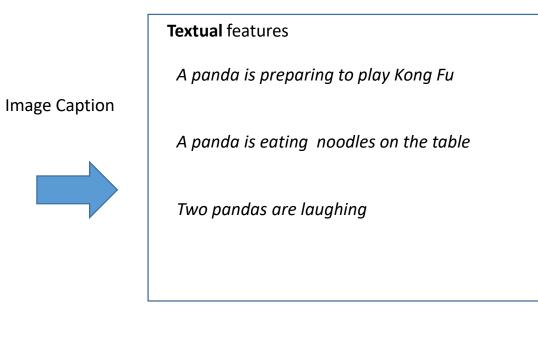
Models

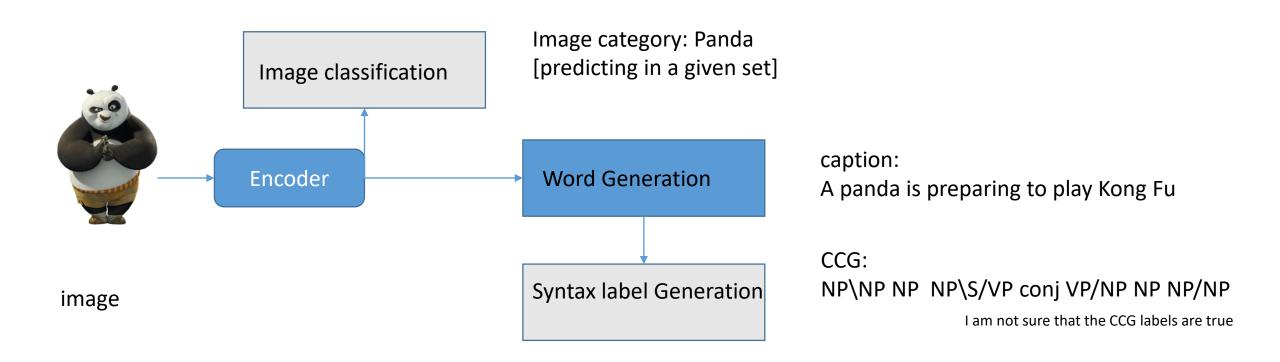
Datasets

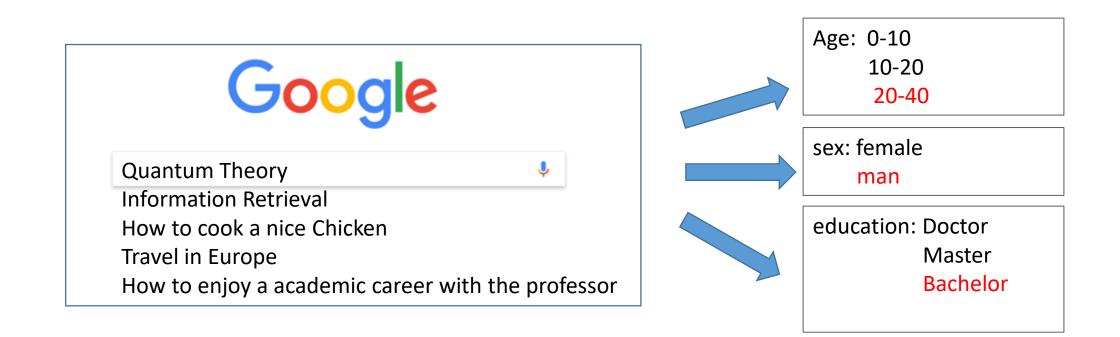

✓ FasText	
✓CNN (Kim CNN, Multi-Layer CNN, Multi-perspective CNN, Inception CNN)	• IMDB
✓LSTM (BILSTM, StackLSTM, LSTM with Attention)	• MR
✓ Hybrids between CNN and RNN (RCNN, C-LSTM)	• CR
 Attention (Self Attention / Quantum Attention) 	
 Transformer - Attention is all you need 	 MPQA
✓Capsule	• SST1
✓Quantum-inspired NN	• SST2
➤ConS2S	
Memory Network	• Subj


TREC

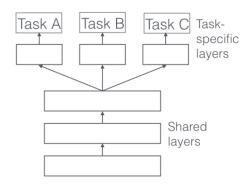
Wang B, Wang L, Wei Q. TextZoo, a New Benchmark for Reconsidering Text Classification[J]. arXiv preprint arXiv:1802.03656, 2018. https://github.com/wabyking/TextClassificationBenchmark


Understand the content of a movie [Wei et.al IJCAI 2018]

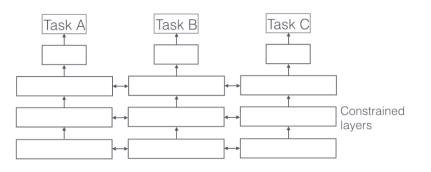




Multi-task for encoder and decoder


Multi-task approach

Example: Using **query logs** to infer the user profile like age, sex and education background



http://www.datafountain.cn/data/science/player/competition/detail/description/239 Sougou User profile competition 2016

Two Typical Multi-task Paradigms

Hard parameter sharing

Soft parameter sharing

The distance between the parameters of the model is then regularized in order to encourage the parameters to be similar

http://ruder.io/multi-task/

Caruana, R. "Multitask learning: A knowledge-based source of inductive bias. ICML. 1993.

Duong, L., Cohn, T., Bird, S., & Cook, P. Low Resource Dependency Parsing: Cross-lingual Parameter Sharing in a Neural Network Parser. ACL-NAACL 2015

Representation inspired by Quantum

- Quantum Probability Space
- Quantum Many-body wave function and Tensor language model
- Quantum Capsule Models (Using direction, instead of numerical number)
- Quantum two-state Formalism

Melucci M. An Algorithm to Calculate a Quantum Probability Space[J]. arXiv preprint arXiv:1710.10158, 2017.

Zhan Su, Peng Zhang, Lipeng Zhang, Benyou Wang, et.al. A Quantum Many-body Wave Function Inspired Language Modeling Approach, submitted to CIKM 2018. Pestun V, Vlassopoulos Y. Tensor network language model[J]. arXiv preprint arXiv:1710.10248, 2017.

Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems. 2017: 3856-3866.

Key concerns

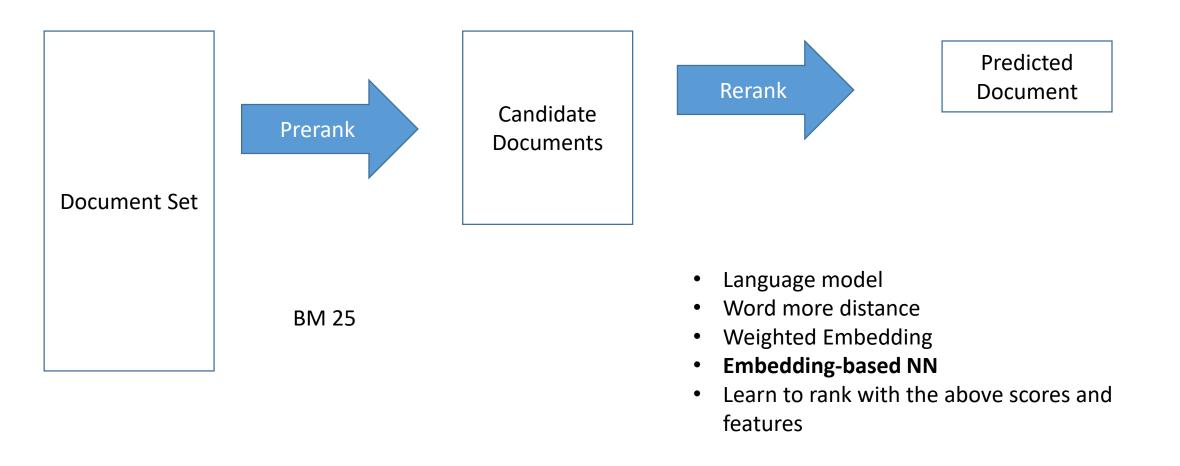
• How to make a good matching

- Ad hoc retrieval
- Question Answering
- GAN for Matching
- Recommendation
- Customer Service

[Quantum Query Expansion Entropy 2018]

[End-2-End QLM AAAI 2018]

[IRGAN SIGIR 2017]

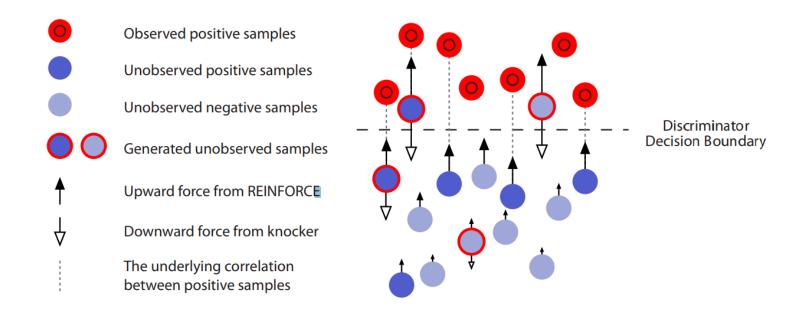

[Long + short-term Profile IJCAI 2018]

[QA NLPCC 2016&NLPCC 2018]

Customer Service in Tencent

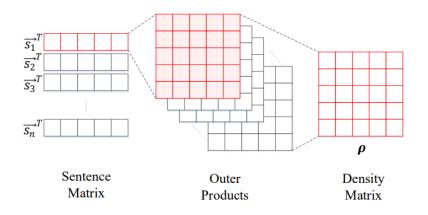
Given a set of Frequent Question Answer Pairs, and answer a new question from the give QA collection.

QA matching tasks from a industrial view


- Count-based VS Embedding-based
 - Count-based bag-of-word models are more robust
 - Embedding-based models needs supervised corpus.

• If you have **enough more high-quality supervised matching pair**. It should achieve much better performance

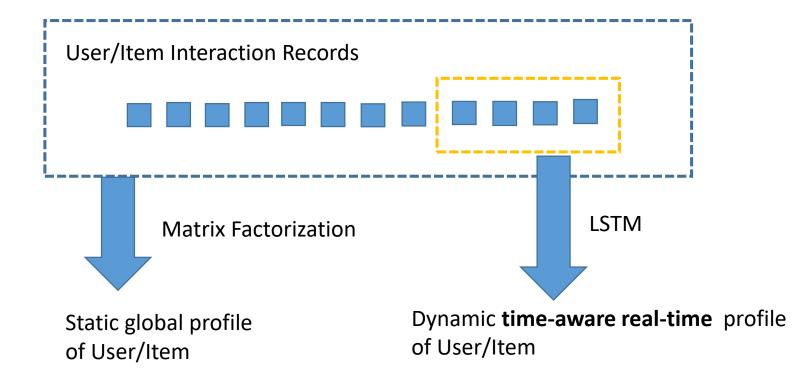
Wang Benyou, Niu Jiabing, Ma Liqun, Zhang Yuhua, Zhang Lipeng, Li Jinfei, Zhang Peng Song, D. . <u>A Chinese Question Answering Approach Integrating Count-Based and Embedding-Based Features</u>. ICCPOL-NLPCC . December, 2016 Su Zhan, Wang Benyou, Niu Jiabin, Tao Shuchang, Zhang Peng, Song Dawei. <u>Enhanced Embedding based Attentive Pooling Network for Answer Selection</u>. NLPCC 2017


IRGAN [Jun et.al. SIGIR 2017]

Adjust the original unsupervised models via the feedback from the supervised ones

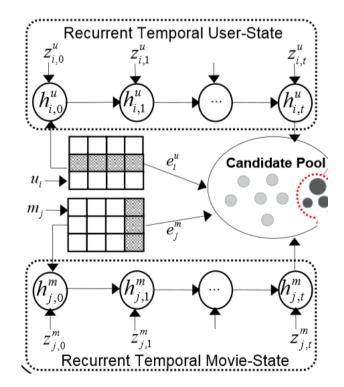
Wang Jun, Yu Lantao, Zhang Weinan, Gong Yu, Xu Yinghui, Wang Benyou, Zhang Peng, Zhang Dell. <u>IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval</u> <u>Models.</u> SIGIR 2017. Best Paper Award Honourable Mentions.

End2end Language model [Peng et.al AAAI 2018]

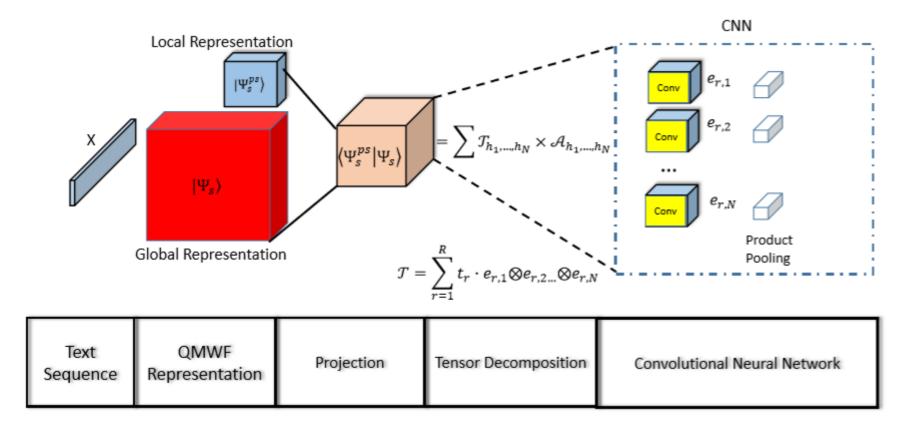


Matching with two matrices

- $tr(\rho_1\rho_2)$
- CNN over $ho_1
 ho_2$


More **non-quantumnic**, the better in performance

Long/short profile for Item/User [Wei et.al IJCAI 2018]


Wei Zhao, Wang Benyou, Jianbo Ye, Yongqiang Gao, Min Yang, Xiaojun Chen, PLASTIC: Prioritize Long and Short-term Information in Top-n Recommendation using Adversarial Training, IJCAI 2018

Long/short profile for Item/User [Wei et.al IJCAI 2018]

Wei Zhao, Wang Benyou, Jianbo Ye, Yongqiang Gao, Min Yang, Xiaojun Chen, PLASTIC: Prioritize Long and Short-term Information in Top-n Recommendation using Adversarial Training, IJCAI 2018

Quantum Many body language for NN

Use CNN to *approximate* Tensor Decomposition in the projection of Quantum Many-Body Language Function

Future

I am Open with the research topics

- Quantum Probability Space
- Contextual Quantum language model in Dynamics
- Capsule Network with Quantum mechanism
- Develop unsupervised IR models with adversarial method

•

Thanks