

Sequential Modelling in Vector Space

Benyou Wang, Emanuele Di Buccio and Massimo Melucci University of Padova, Italy

11th Italian Information Retrieval Workshop, September 13-15, 2021, Bari, Italy

Embed Discrete Objects in Vector Space

Two examples

- Word embedding
- User/item embedding

Learn implicit features that could be adaptively updated during training

Word Embedding

Prediction-based method [1,2]

- e.g., using neural networks to predict central/neighboring words

Count-based method [3]

- e.g., decompose PPMI matrices

[1] Bengio et.al. A Neural Probabilistic Language Model. JMLR 2003
[2] Mikolov et.al. Efficient Estimation of Word Representations in Vector Space. NIPS 2013.
[3] Pennington et.al. GloVe: Global Vectors for Word Representation. EMNLP 2014

]

Sequential aspects to model

Position

- Encode word order in neural networks (e.g., Transformer [1]) [2]

Temporal Evolution

- Individual words may change their meaning over time
- Existing solutions, e.g., Dynamic Word Embeddings

[1] Vaswani et.al. Attention is all you need, NIPS 2017 [2] Benyou Wang et.al. Encoding word order in complex embeddings

Example 1: short-term evolution

Clinton Bill

Obama

Joe president (2021)

Example 2: long-term evolution

Train and Align Paradigm

Previous one-hop assumption

Our approach

gay (1950s)

Unified transformation

gay (2000s)

Modeling Word as Functions

Treating time as a continuous variable [4] induces a new formalization (Word2Fun) $f:(N) \rightarrow G\{g; g: N \rightarrow R^k\}$ Word index Time index

Question: Which functions should we use?

[4] Alex Rosenfeld, Katrin Erk. Deep Neural Models of Semantic Shift. NAACL 2018

time

Here we define a **temporal word embedding** $f(\cdot, \cdot) : (\mathbb{N}, \mathbb{R}) \to \mathbb{R}^D$ that maps a word w_i in time t as a N-dimensional vector $f(i, t) \in \mathbb{R}^D$. $f_i(t)$ is a function over t.

Here we define a **temporal word embedding**

We also define a static word embedding for alignment, also called a compass [1].

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI 2019

- $f(\cdot, \cdot): (\mathbb{N}, \mathbb{R}) \to \mathbb{R}^D$
- that maps a word w_i in time t as a N-dimensional vector $f(i, t) \in \mathbb{R}^D$. $f_i(t)$ is a function over t.
 - $g(\cdot):\mathbb{N}\to\mathbb{R}^D$

Here we define a **temporal word embedding**

We also define a static word embedding for alignment, also called a compass [1].

A dot product between them should approximate their PPMI over time.

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI 2019

 $f(\,\cdot\,,\,\cdot\,):(\mathbb{N},\mathbb{R})\to\mathbb{R}^D$

that maps a word w_i in time t as a N-dimensional vector $f(i, t) \in \mathbb{R}^D$. $f_i(t)$ is a function over t.

- $g(\cdot):\mathbb{N}\to\mathbb{R}^D$
- $f_i(t)g(j)^T \propto PPMI_{i,i}(t)$

Between-word relatedness over Time

					(clio
0.00000000%	1820	1840	1860	1880	1
0.00000020% -					
0.00000040% –					
0.00000060% -					
0.00000080% -					
0.00000100% -					
0.00000120% -					
0.00000140% -					
0.00000160% -					
0.00000180% -					

evolving relatedness between "president" and "bush" may be highly-nonlinear

The result is from https://books.google.com/ngrams

ick on line/label for focus)

14

Here we define a **temporal word embedding**

We also define a static word embedding for alignment, also called a compass [1].

A dot product between them should approximate their PPMI over time.

functions thanks to the Weierstrass Approximation theorem.

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI 2019

 $f(\cdot, \cdot): (\mathbb{N}, \mathbb{R}) \to \mathbb{R}^D$

that maps a word w_i in time t as a N-dimensional vector $f(i, t) \in \mathbb{R}^D$. $f_i(t)$ is a function over t.

- $g(\cdot):\mathbb{N}\to\mathbb{R}^D$
- $f_i(t)g(j)^T \propto PPMI_{i,i}(t)$

When $f_i(t)$ is formalised as a sinusoidal function. $f(i, t)g(j)^T$ is proved to approximate any continuous

Word2Fun (examples)

cheerful in 1920s

-

gay in 1910s

homosexual in 1930s

Experimental Evaluation

Mathad	10 Clusters		15 Clusters		20 Clusters	
Method	NMI	F_{eta}	NMI	F_{β}	NMI	F_{eta}
Global/static word vector [16]	0.6736	0.6163	0.6867	0.7147	0.6713	0.7214
Transformed Word2Vec [14]	0.5175	0.4584	0.5221	0.5072	0.5130	0.5373
Aligned Word2Vec [9]	0.6580	0.6530	0.6618	0.7115	0.6386	0.7187
Dynamic Word2Vec [26]	0.7175	0.6949	0.7162	0.7515	0.6906	0.7585
Compass aligned Word2Vec [6]	0.5191	0.3750	0.5062	0.4051	0.5077	0.4331
Word2Fun linear	0.1676	0.1813	0.2826	0.3035	0.2473	0.2932
Word2Fun I (Time2Fun)	0.1703	0.1783	0.2691	0.2680	0.2842	0.2649
Word2Fun II	0.7281	0.7147	0.7181	0.7645	0.7012	0.7616
Word2Fun III	0.7233	0.7080	0.7086	0.7701	0.6980	0.7630
Word2Fun IV	0.7111	0.6913	0.7023	0.7451	0.6823	0.7602

Table 3: Experimental results of Time-aware word clustering.

Time-aware word clustering

Table 5: Experimental results of temporal analogy in *test2*

Method	MRR	P@1	P@3	P@5	P@10
Global/static Word2Vec [16]	0.0472	0.0000	0.0787	0.0787	0.2022
Transformed Word2Vec [14]	0.0664	0.0404	0.0764	0.0989	0.1438
Aligned Word2Vec [9]	0.0500	0.0225	0.0517	0.0787	0.1416
Dynamic Word2Vec [26]	0.1444	0.0764	0.1596	0.2202	0.3820
Compass Aligned Word Embedding [6]	0.1361	0.0749	0.1918	0.2904	0.3918
Word2Fun linear	0.0425	0.0137	0.0384	0.0630	0.1014
Word2Fun I (Time2Fun)	0.0992	0.0000	0.1315	0.1726	0.2849
Word2Fun II	0.1194	0.0358	0.1075	0.2219	0.3863
Word2Fun III	0.1824	0.0795	0.1973	0.2932	0.4164
Word2Fun IV	0.1536	0.0548	0.1562	0.2411	0.3918

Temporal analogy test2

IRR I	P@1	P@3	P@5	P@10
3560 0.	.2664 (0.4210	0.4774	0.5612
0920 0.	.0500	0.1168	0.1482	0.1910
1582 0.	.1066	0.1814	0.2241	0.2953
4222 0.	.3306	0.4854	0.5488	0.6191
481 0).404	0.534	0.582	0.636
3016 0.	.2649 (0.3255	0.3426	0.3630
3735 0.	.2646	0.4300	0.4955	0.5874
4061 0.	.2756	0.4916	0.5614	0.6434
4354 0.	.3076	0.5330	0.5837	0.6647
4208 0.	.2954 (0.5076	0.5715	0.6470
	IRR 1 3560 0 3560 0 3582 0 4222 0 4222 0 481 0 3016 0 3735 0 4061 0 4354 0 4208 0	IRR P@1 3560 0.2664 0 920 0.0500 0 1582 0.1066 0 4222 0.3306 0 481 0.404 0 3016 0.2649 0 3735 0.2646 0 4354 0.3076 0 4208 0.2954 0	IRRP@1P@3 3560 0.2664 0.4210 0920 0.0500 0.1168 1582 0.1066 0.1814 4222 0.3306 0.4854 481 0.404 0.534 3016 0.2649 0.3255 3735 0.2646 0.4300 4061 0.2756 0.4916 4354 0.3076 0.5330 4208 0.2954 0.5076	IRRP@1P@3P@5 3560 0.2664 0.4210 0.4774 0920 0.0500 0.1168 0.1482 1582 0.1066 0.1814 0.2241 4222 0.3306 0.4854 0.5488 4810.4040.534 0.582 3016 0.2649 0.3255 0.3426 3735 0.2646 0.4300 0.4955 4061 0.2756 0.4916 0.5614 4354 0.3076 0.5330 0.5837 4208 0.2954 0.5076 0.5715

Table 4: Experimental results of temporal analogy in test1

Temporal analogy test1

Table 6: Semantic change detection. Baselines in the first group are implemented by this work.

models	Pearson	Spearman
Global/static Word2Vec [16]	nan	nan
Transformed Word2Vec [14]	0.0727	0.0865
Aligned Word2Vec [9]	0.3333	0.3083
Dynamic Word2Vec [26]	0.2727	0.2877
Compass aligned word embedding [6]	0.3199	0.2567
Word2Fun linear	-0.1200	-0.0790
Word2Fun I (Time2Fun)	0.3925	0.4550
Word2Fun II	0.4478	0.5038
Word2Fun III	0.5355	0.4057
Word2Fun IV	0.4483	0.3578
multilingual BERT [20] (SemEval-2020 1st)	-	0.436
ensemble between aligned Word2Vec and BERT [18] (SemEval-2020 2nd)	-	0.422

Semantic change detection

Case study

word	1900s	1920s	1940s	1960s	1980s	2000s
frolicsome	0.5230	0.3574	0.2802	0.1511	0.1649	0.1992
playful	0.4094	0.3757	0.4268	0.3298	0.2425	0.2839
debonair	0.3840	0.4705	0.5523	0.4597	0.2243	0.3547
activists	0.2319	0.2430	0.0892	0.2894	0.4698	0.4072
homosexuality	-0.1435	-0.0274	0.1209	0.2605	0.3242	0.3727

Word similarity to "gay" over time

Acknowledgments

This work is supported by the Quantum Access and Retrieval Theory (QUARTZ) project, which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721321.

