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Learn implicit features that could be adaptively updated during training

Two examples 

• Word embedding 
• User/item embedding 

Embed Discrete Objects in Vector Space
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•Prediction-based method [1,2] 
- e.g., using neural networks to predict central/neighboring words 

•Count-based method [3] 
- e.g., decompose PPMI matrices 

[1] Bengio et.al. A Neural Probabilistic Language Model. JMLR 2003 

[2] Mikolov et.al. Efficient Estimation of Word Representations in Vector Space. NIPS 2013. 

[3] Pennington et.al. GloVe: Global Vectors for Word Representation. EMNLP 2014

Word Embedding



Sequential aspects to model
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• Position 
- Encode word order in neural networks (e.g., Transformer [1]) [2] 

• Temporal Evolution 
- Individual words may change their meaning over time  

- Existing solutions, e.g., Dynamic Word Embeddings

[1] Vaswani et.al. Attention is all you need, NIPS 2017 

[2] Benyou Wang et.al. Encoding word order in complex embeddings



Example 1: short-term evolution
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Example 2: long-term evolution



Train and Align Paradigm
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gay (1900s) gay (1950s)

Dynamic corpora
(1900s)

(1950s)

(2000s)

Trained word vectors
gay (2000s)



Previous one-hop assumption
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gay (1900s)

gay (1950s)

gay (2000s)

transformation  
1900s-> 1950s

transformation 
1950s-> 2000s



Our approach
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gay (1950s)
gay (1900s)
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Unified transformation  



Treating time as a continuous variable [4] induces a new formalization (Word2Fun)
 𝒇: (𝑵)  𝑮{𝒈; 𝒈:𝑵 𝑹𝒌}

Word index Time index

Question: Which functions should we use?
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time
3-d word vector for gay over time

Modeling Word as Functions

[4] Alex Rosenfeld, Katrin Erk. Deep Neural Models of Semantic Shift. NAACL 2018

https://aclanthology.org/N18-1044.pdf
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Here we define a temporal word embedding  

  

that maps a word w_i in time t as a N-dimensional vector .  is a function over t.   

 

f( ⋅ , ⋅ ) : (ℕ, ℝ) → ℝD

f(i, t) ∈ ℝD fi(t)

Approximation of Word Meaning Evolution
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Here we define a temporal word embedding  

  

that maps a word w_i in time t as a N-dimensional vector .  is a function over t.   

We also define a static word embedding for alignment, also called a compass [1]. 

 

 

f( ⋅ , ⋅ ) : (ℕ, ℝ) → ℝD

f(i, t) ∈ ℝD fi(t)

g( ⋅ ) : ℕ → ℝD

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI  2019
 

Approximation of Word Meaning Evolution
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Here we define a temporal word embedding  

  

that maps a word w_i in time t as a N-dimensional vector .  is a function over t.   

We also define a static word embedding for alignment, also called a compass [1]. 

 

A dot product between them  should approximate their PPMI over time. 

 

 

f( ⋅ , ⋅ ) : (ℕ, ℝ) → ℝD

f(i, t) ∈ ℝD fi(t)

g( ⋅ ) : ℕ → ℝD

fi(t)g( j)T ∝ PPMIi,j(t)

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI  2019
 

Approximation of Word Meaning Evolution



Between-word relatedness over Time

14

evolving relatedness between “president” and “bush” may be highly-nonlinear

The result is from https://books.google.com/ngrams
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Here we define a temporal word embedding  

  

that maps a word w_i in time t as a N-dimensional vector .  is a function over t.   

We also define a static word embedding for alignment, also called a compass [1]. 

 

A dot product between them  should approximate their PPMI over time. 

 

When  is formalised as a sinusoidal function.   is proved to approximate any continuous  

functions thanks to the Weierstrass Approximation theorem. 

 

f( ⋅ , ⋅ ) : (ℕ, ℝ) → ℝD

f(i, t) ∈ ℝD fi(t)

g( ⋅ ) : ℕ → ℝD

fi(t)g( j)T ∝ PPMIi,j(t)

fi(t) f(i, t)g( j)T

[1] Valerio Di Carlo et.al. Training Temporal Word Embeddings with a Compass. AAAI  2019
 

Approximation of Word Meaning Evolution
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gay in 1910s cheerful in 1920s homosexual in 1930s

Word2Fun (examples)



Experimental Evaluation
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Time-aware word clustering Temporal analogy test1

Temporal analogy test2 Semantic change detection



Case study
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Word similarity to “gay” over time
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