Research discussion

Neural network background and our potential ideas

Governing a large country is like cooking a small dish 治大国若烹小鲜

ancient Chinese philosopher, Lao-tzu, said

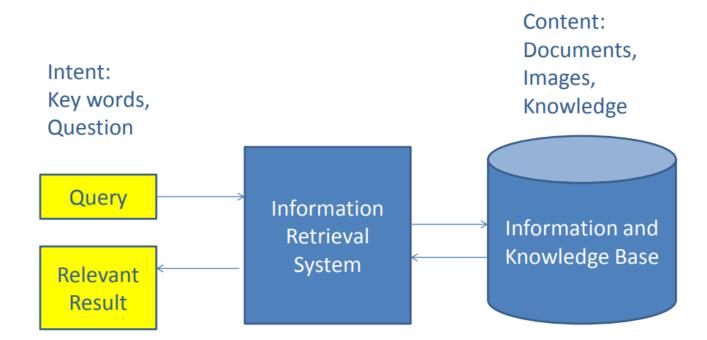
Contents

- General Cooking
 - Material : Word embedding
 - Methods: Neural network
- Quantum-style Cooking

Background of Neural IR

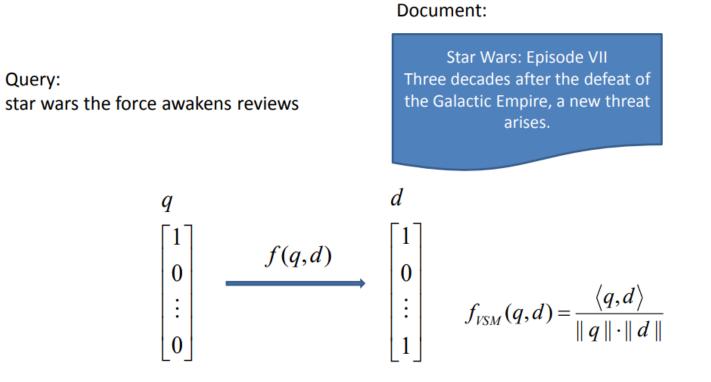
- Trends of DL for IR
- Word embedding
- Neural network
- DL for IR/NLP

IR background



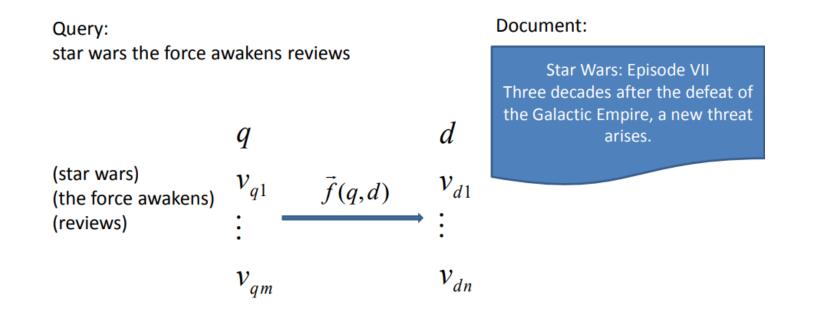
Key Questions: How to Represent Intent and Content, How to Match Intent and Content

Traditional IR – Tfidf example



- Representing query and document as word vectors
- calculating cosine similarity between them

Modern IR – Learn to Rank



- Conducting query and document understanding
- Representing query and document as multiple feature vectors
- Calculating multiple matching scores between query and document
- Training ranker with matching scores as features using learning to rank

Features + Ranking

Features:

- Language model
- BM25
- Title/Snippet/Document
- Pagerank

Ranking:

- Point-wise
- Pair-wise
- List-wise

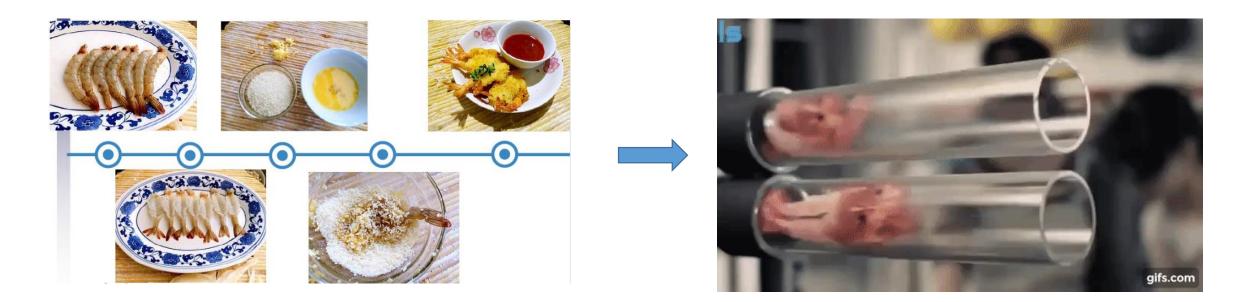
Credited to Prof. Songchun Zhu

Example of Mismatch

Query	Document	Term Matching	Semantic Matching
seattle best hotel	seattle best hotels	no	yes
pool schedule	swimmingpool schedule	no	yes
natural logarithm transformation	logarithm transformation	partial	yes
china kong	china hong kong	partial	no
why are windows so expensive	why are macs so expensive	partial	no

Hang li, http://www.hangli-hl.com/uploads/3/4/4/6/34465961/tsinghua_opportunities_and_challenges_in_deep_learning_for_information_retrieval.pdf

End-to-end



https://www.youtube.com/watch?v=TYpBJ71VW9g

The inputting features are also **learnable/trainable**

Credited to Dr. Naiyan Wang

Trends for Neural IR

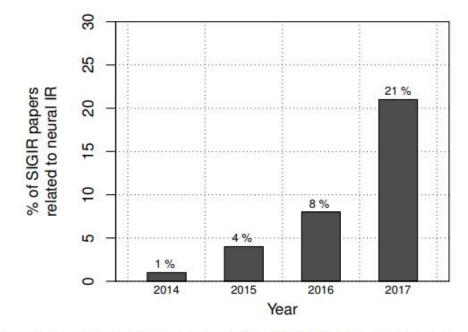


Figure 1: The percentage of neural IR papers at the ACM SIGIR conference—as determined by a manual inspection of the paper titles—shows a clear trend in the growing popularity of the field.

Background of Neural IR

- Trends of DL for IR
- Word embedding
- Neural network
- DL for IR/NLP

Localist representation

Size color ... unknown

- BMW [1, 0, 0, 0, 0] [.3, .7, .2, .1, .5]
 Audi [0, 0, 0, 1, 0] [.5, .3, .2, .1, .0]
 Benz [0, 0, 1, 0, 0] [.2, .0, .31, .03, .01]
- Polo [0, 0, 0, 1, 0] [.1, .1, .5, .5, 0.2]

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/lectures/lec5.pdf

Distributed representation

Size color ... unknown

- BMW [1, 0, 0, 0, 0]
- Audi [0, 0, 0, 1, 0]
- Benz [0, 0, 1, 0, 0]
- Polo [0, 0, 0, 1, 0]

[.3, .7, .2, .1, .5]

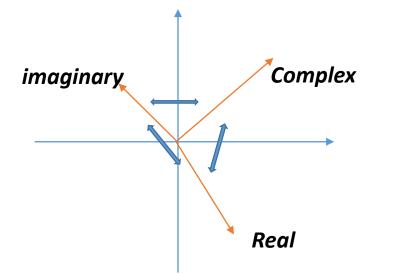
[.5, .3, .2, .1, .0]

[.2, .0, .31, .03, .01]

[.1, .1, .5, .5, 0.2]

Embedding

Distributional hypothesis *linguistic items with similar distributions have similar meanings*



Life is **complex**. It has both **real** and **imaginary** parts

https://en.wikipedia.org/wiki/Distributional_semantics

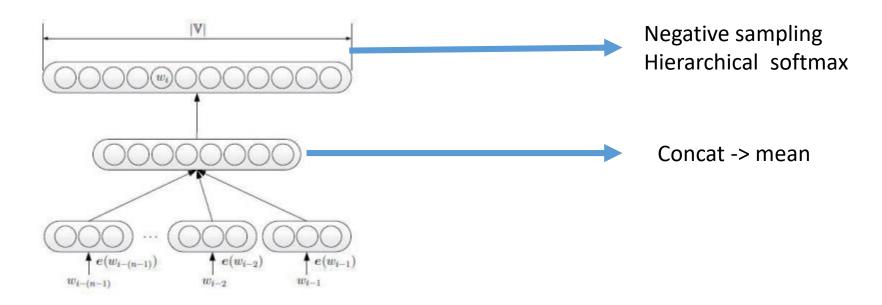
How to get Distributed representation

- Matrix Factorization
 - Word-word Matrix
 - Document-word Matrix
 - PLSA
 - LDA
- Sample-based Prediction
 - NNLM
 - C & W
 - Word2vec

Glove is a combination between these two schools of approaches

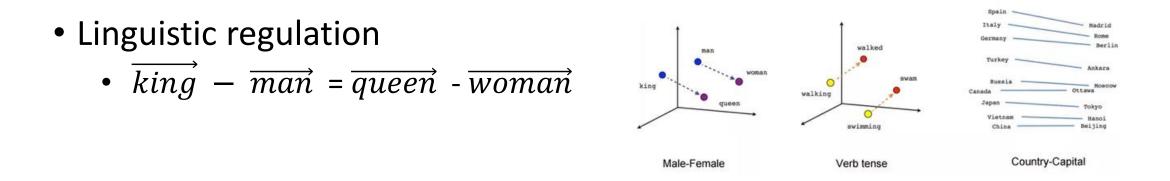
Levy, Omer, and Yoav Goldberg. "Neural word embedding as implicit matrix factorization." Advances in neural information processing systems. 2014.

NNLM to Word2vec

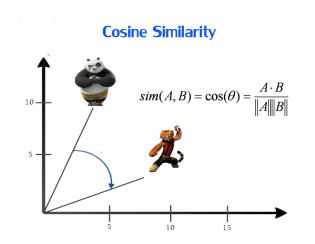


Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of machine learning research, 2003, 3(Feb): 1137-1155. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

Advantage of word embedding



- Semantic matching
 - As the initial input Feature/Weight for NN



Only Word Embedding ?

Which is the most similar word of "Italy"?

Maybe "Germany" or "Pasta" ?

You cannot guarantee that each similar word pair could help your matching ?

Nie Jianyun said in SIGIR 2016 Chinese-Author Workshop, Tsinghua University, Beijing

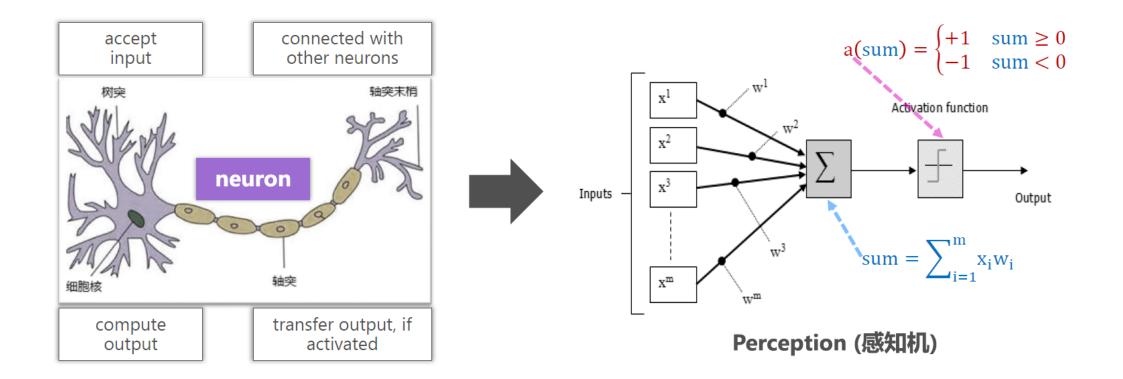
Background of Neural IR

- Trends of DL for IR
- Word embedding
- Neural network
- DL for IR/NLP

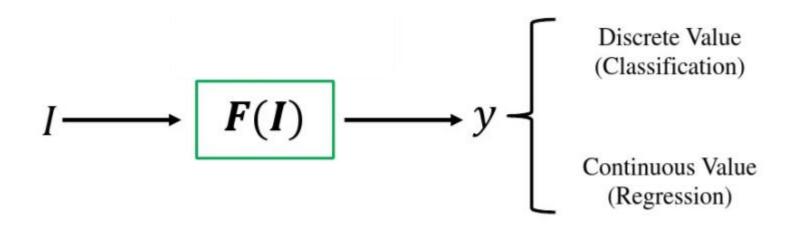
Neural Network

- MLP
- CNN
 - Shift/Space invariant
- Recurrent NN [LSTM/GUR]
 - Time-sensitive
- Recursive NN
 - Structure-sensitive
- Special Case
 - Seq2seq
 - GAN
 - Reinforced Learning

MLP

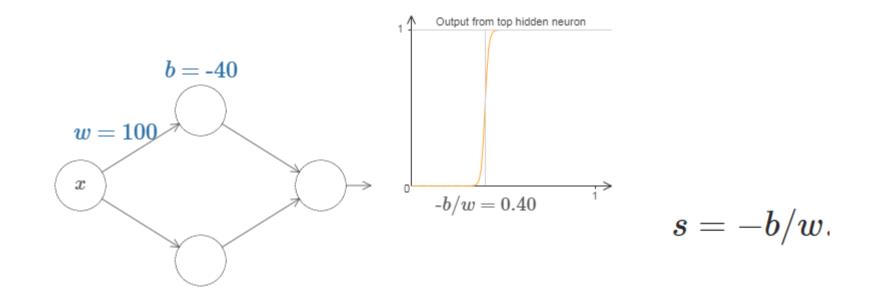


UAT in MLP



Multi-layer Non-linear Mapping -> Universal Approximation Theorem

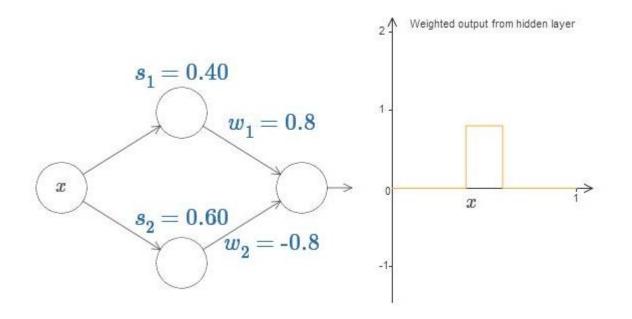
A sample of θ (wx+b)



$$\sigma(wx+b)$$
, where $\sigma(z) \equiv 1/(1+e^{-z})$

http://neuralnetworksanddeeplearning.com/chap4.html

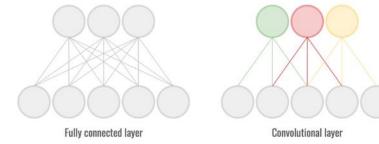
An another sample

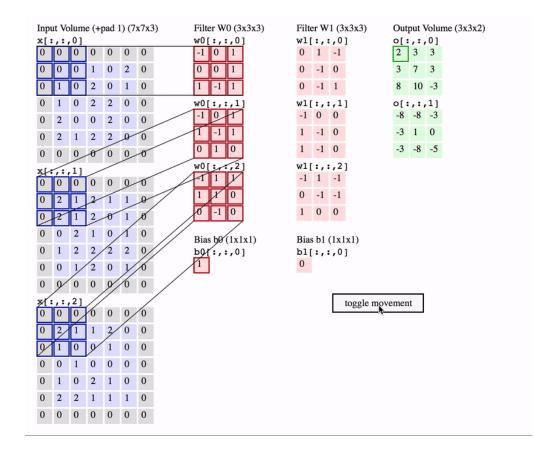


 $\sigma(wx+b),$ where $\sigma(z)\equiv 1/(1+e^{-z})$

From MLP to CNN

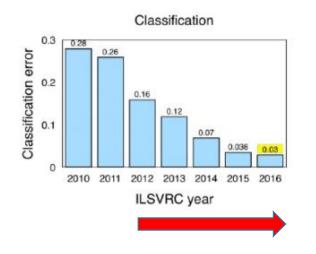
- Local connection
- Shared weight
- Pooling strategy



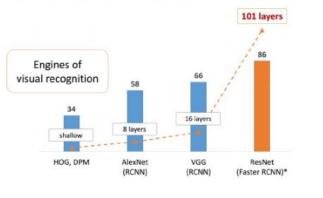


Deep NN in CV

Top 5 error in ImageNet classification

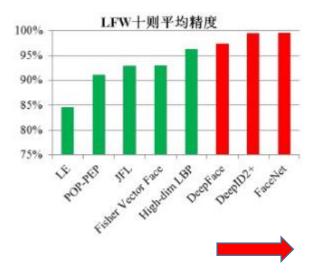


Deep NN



MAP in Pascal VOC visual recognition

10-fold mean precision Face recognition LFW dataset



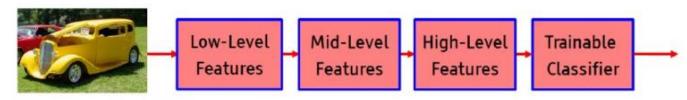
Credited to Prof. Shiguang Shan with modified

End-2-end in CV

• Tradition CV

• Modern CV: Unsupervised mid-representation

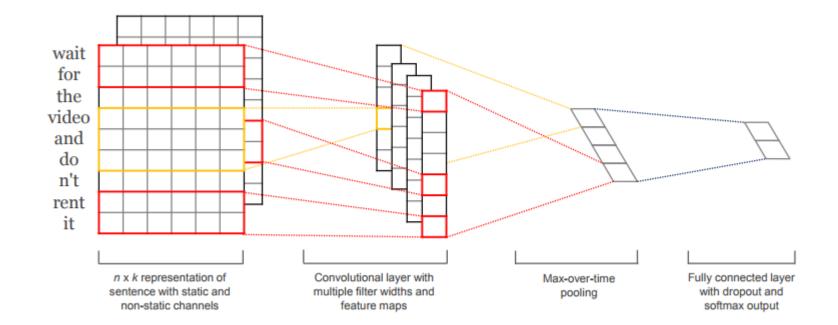
• DNN CV : end-2-end



CNN

- Basic CNN
- Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv:1404.2188, 2014
- Kim CNN
- VDCNN

CNN [kim EMNLP 2014]



		0011	0012	- Guoj	11000		
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	-	-	-	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	-	-	-	-
RNTN (Socher et al., 2013)	-	45.7	85.4	-	-	-	-
DCNN (Kalchbrenner et al., 2014)	-	48.5	86.8	-	93.0	-	-
Paragraph-Vec (Le and Mikolov, 2014)	-	48.7	87.8	-	-	-	-
CCAE (Hermann and Blunsom, 2013)	77.8	-	-	-	-	-	87.2
Sent-Parser (Dong et al., 2014)	79.5	-	-	-	-	-	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	-	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	-	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	-	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	-	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	-	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	-	-	-	-	-	82.7	-
SVM _S (Silva et al., 2011)	-	-	-	-	95.0	-	-

MR SST-1 SST-2 Subj TREC CR MPQA

Model

Figure 1: Model architecture with two channels for an example sentence.

Go deeper or not?

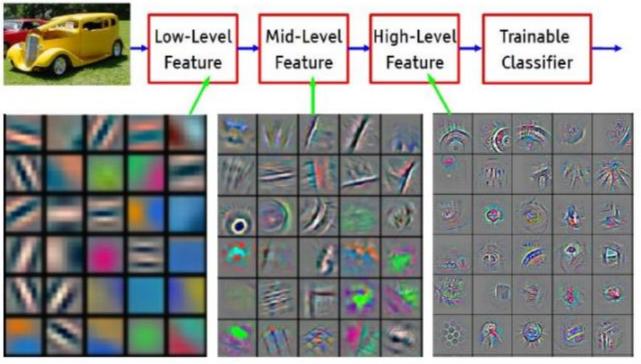
• DEEP

- Slower
- Overfitting
 - More Parameters, more data need to feed
- Hard for convergence
 - Highway network
 - Residual Block
 - Inception

- Shallow: one-layer
 - Fast
 - Less data, es. Fastext.

Go deeper or not?

Image recognition: Pixel → edge → texton → motif → part → object
 Text: Character → word → word group → clause → sentence → story
 Speech: Sample → spectral band → sound → ... → phone → phoneme → word



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] Modified from Prof. LeCun and Prof. Bengio

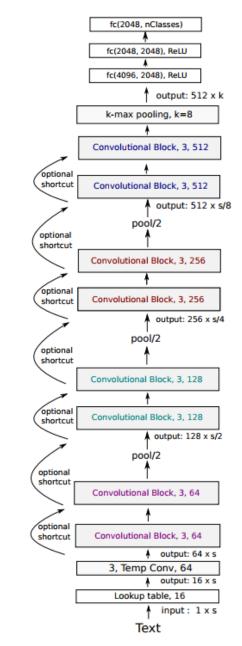
Very Large CNN [Conneau EACL]

Corpus:	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
Method	n-TFIDF	n-TFIDF	n-TFIDF	ngrams	Conv	Conv+RNN	Conv	Conv
Author	[Zhang]	[Zhang]	[Zhang]	[Zhang]	[Zhang]	[Xiao]	[Zhang]	[Zhang]
Error	7.64	2.81	1.31	4.36	37.95*	28.26	40.43*	4.93*
[Yang]	-	-	-	-	-	24.2	36.4	-

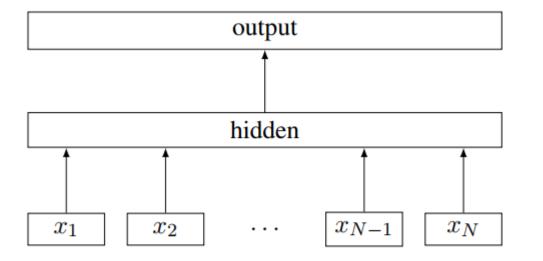
Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data augmentation technique (marked with an *). Yang et al. (2016)'s hierarchical methods is particularly adapted to datasets whose samples contain multiple sentences.

Depth	Pooling	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
9	Convolution	10.17	4.22	1.64	5.01	37.63	28.10	38.52	4.94
9	KMaxPooling	9.83	3.58	1.56	5.27	38.04	28.24	39.19	5.69
9	MaxPooling	9.17	3.70	1.35	4.88	36.73	27.60	37.95	4.70
17	Convolution	9.29	3.94	1.42	4.96	36.10	27.35	37.50	4.53
17	KMaxPooling	9.39	3.51	1.61	5.05	37.41	28.25	38.81	5.43
17	MaxPooling	8.88	3.54	1.40	4.50	36.07	27.51	37.39	4.41
29	Convolution	9.36	3.61	1.36	4.35	35.28	27.17	37.58	4.28
29	KMaxPooling	8.67	3.18	1.41	4.63	37.00	27.16	38.39	4.94
29	MaxPooling	8.73	3.36	1.29	4.28	35.74	26.57	37.00	4.31

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.



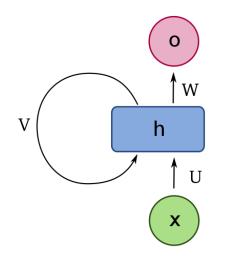
FASTEX [EACL 2017]



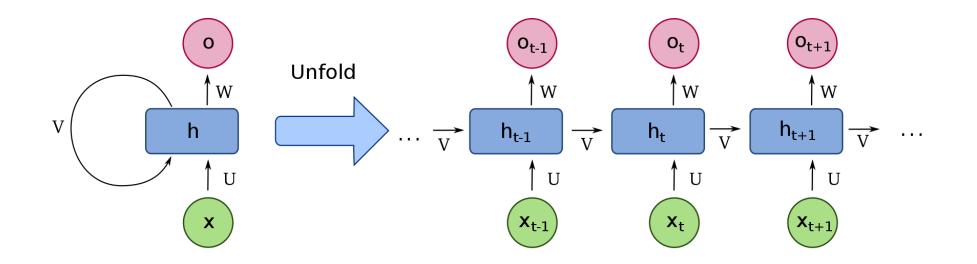
Model	Yelp'13	Yelp'14	Yelp'15	IMDB
SVM+TF	59.8	61.8	62.4	40.5
CNN	59.7	61.0	61.5	37.5
Conv-GRNN	63.7	65.5	66.0	42.5
LSTM-GRNN	65.1	67.1	67.6	45.3
fastText	64.2	66.2	66.6	45.2

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

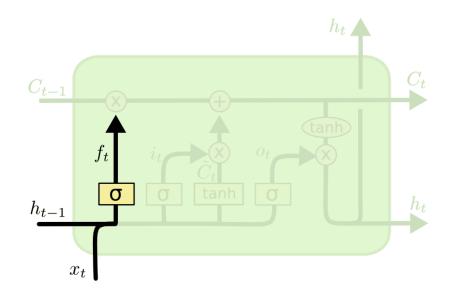
RNN



RNN

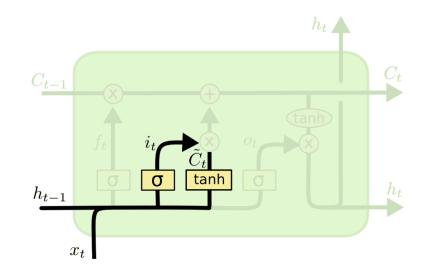


Forget gate



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input gate

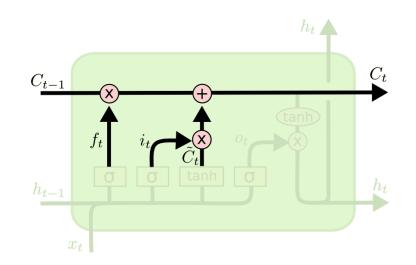


$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

replace tanh with softsign (not softmax) activation for prevent overfitting

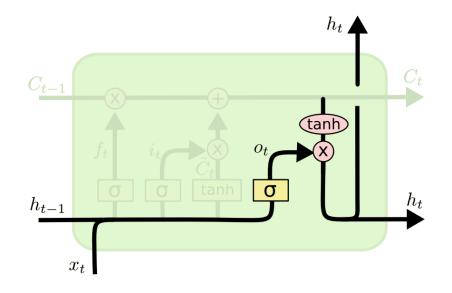
https://zhuanlan.zhihu.com/p/21952042

Forgotten + input



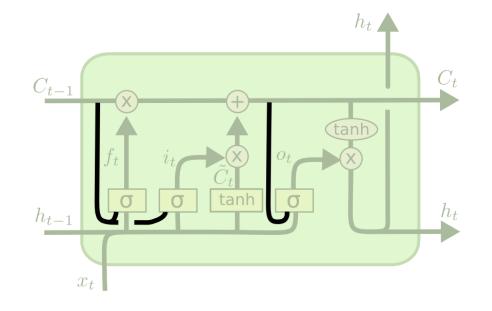
$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate



$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

LSTM Variants: Peephole connections

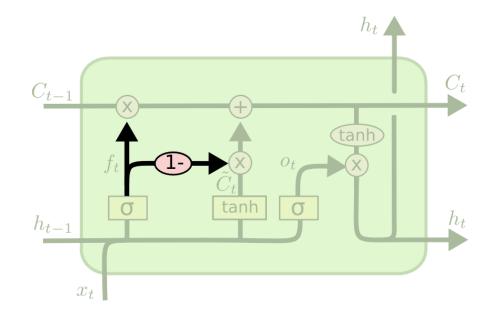


$$f_t = \sigma \left(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right)$$

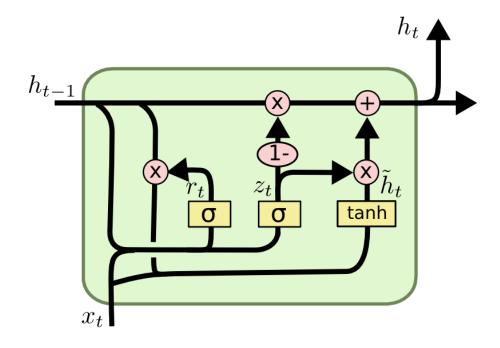
$$o_t = \sigma \left(W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right)$$

LSTM Variants: coupled forget and input gates



$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM Variants: GRU

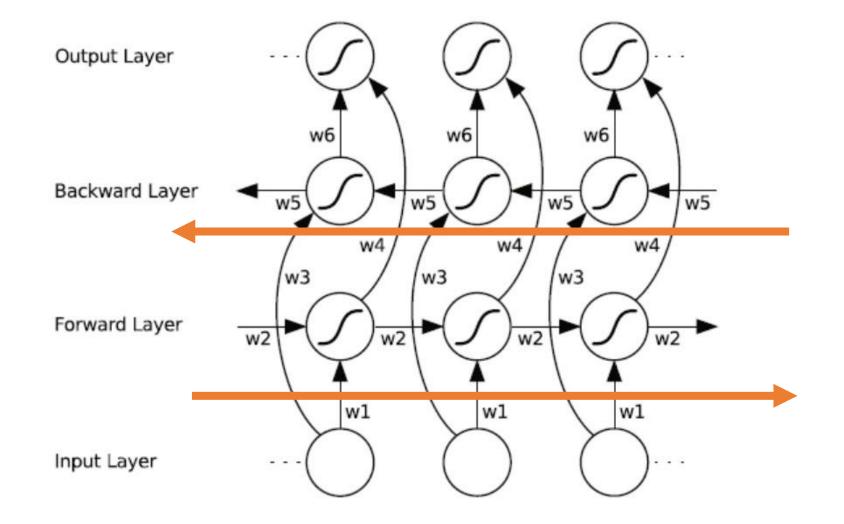


$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

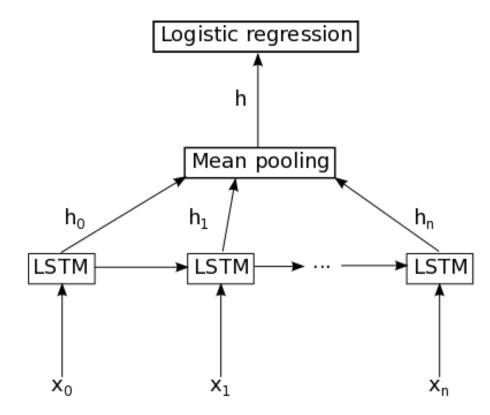
✓ Hidden = Cell

✓ Forget gate + input gate =1

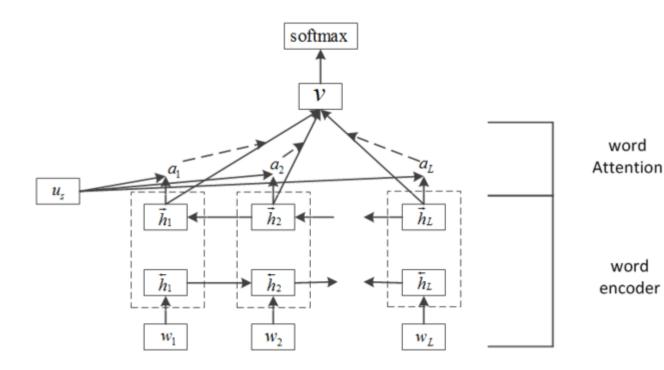
Bilstm



Last or Mean?



RNN/LSTM with Attention



https://www.jianshu.com/p/4fbc4939509f

Visualization of Attention in RNN/LSTM

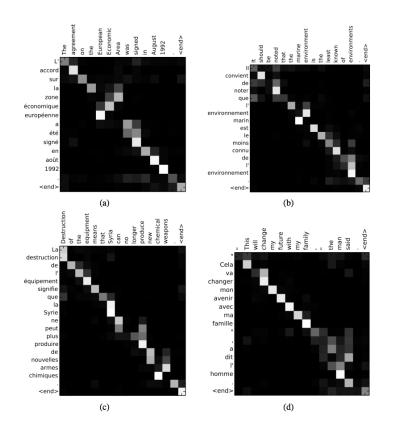


Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

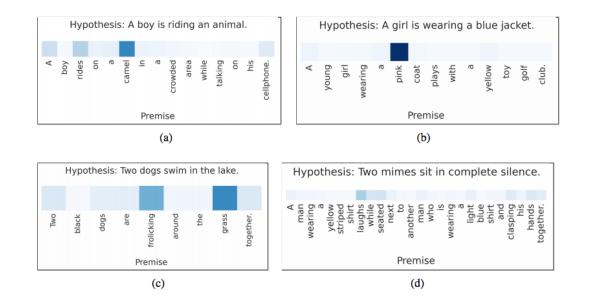
A woman is sitting at a table with a large pizza.

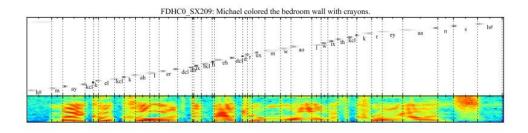
A man is talking on his cell phone while another man watches.

Image Caption

Machine Translation

Visualization of Attention in RNN/LSTM

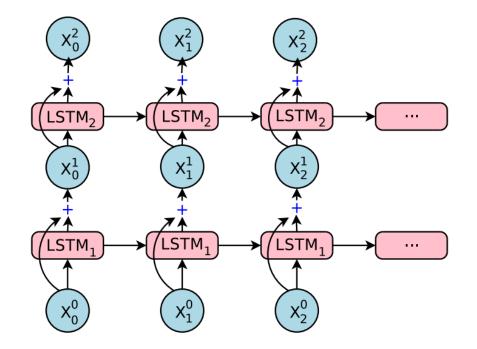




Sematic Entailment

Speech Recognition

Deeper LSTM

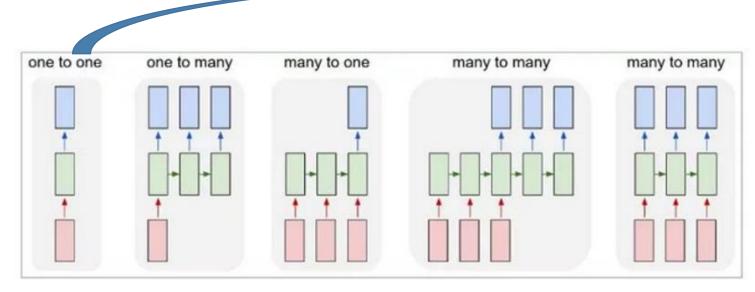


Deep is not necessary, but more feeding data!!!

Background of Neural IR

- Trends of DL for IR
- Word embedding
- Neural network
- DL for IR/NLP

Tasks in IR/NLP



• Classification: assigning a label to a string

 $s \rightarrow c$

• Matching: matching two strings

 $s, t \rightarrow \mathbf{R}^+$

• Translation: transforming one string to another

 $s \rightarrow t$

• Structured prediction: mapping string to structure

 $s \rightarrow s'$

Credited by Hang li

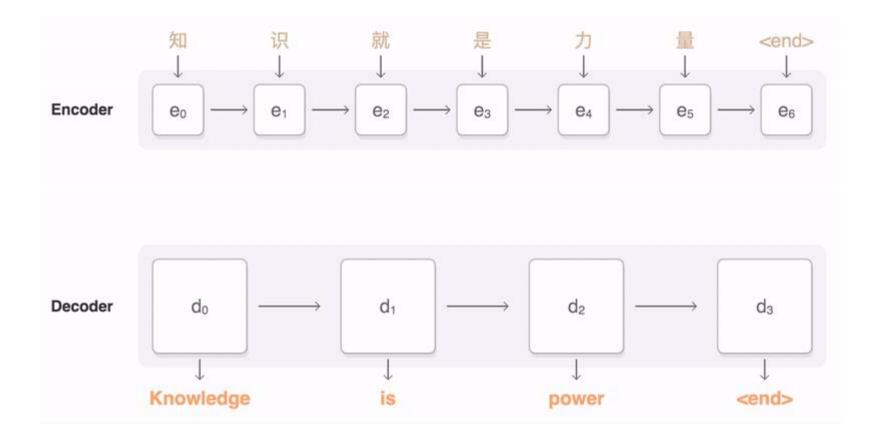
Fundamental Demo In Code with PyTorch pseudo code

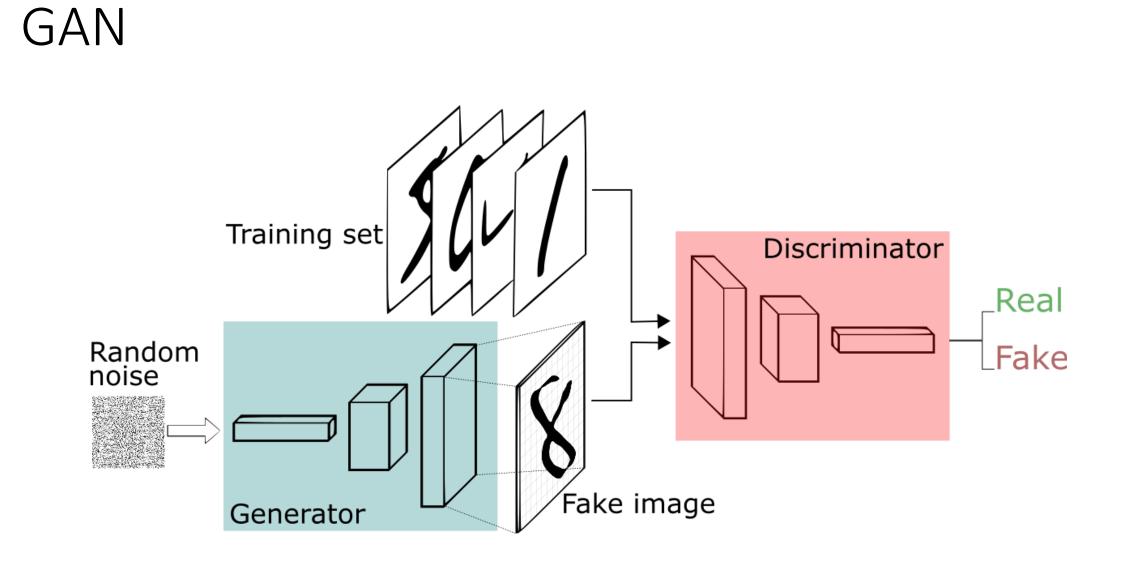
- Model = LSTM/CNN/Capsule/...
- text,lable = Dataset.nextBatch()
- representation = Model(text)
- Classification = FC(representation)

FC : Mapping to label size

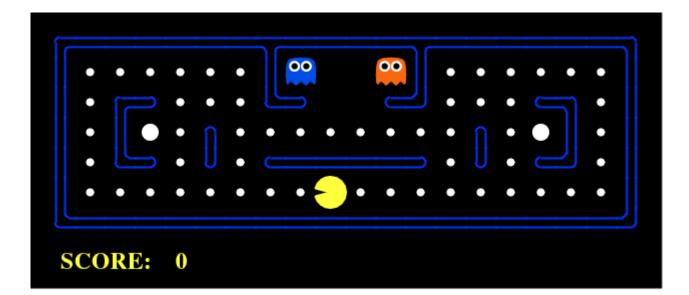
- Translation = Decode(representation)
- Matching = Cosine(representation1, representation2)
- Sequential_labelling = FCs(representations)

Seq2seq





Reinforced learning



Compared to the supervised learning:

You can not know the current reward from the current action, namely a delayed reward, only in the case that the game is finished.

https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html

Quantum-style Cooking

- Hilbert semantic space
 - Complex word embedding
 - Hilbert semantic space
 - Application in Text classification
 - Application in Question Answering
- Ideas
 - Dynamics for thematic issues
 - Evolved Density matrix for language model

Complex word-embedding

Super-linearity superposition with phase

$$z^* = z_1 + z_2 = r_1 e^{i\theta_1} + r_2 e^{i\theta_2}$$

= $\sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_2 - \theta_1)} \times e^{i\arctan\left(\frac{r_1\sin(\theta_1) + r_2\sin(\theta_2)}{r_1\cos(\theta_1) + r_2\cos(\theta_2)}\right)}$

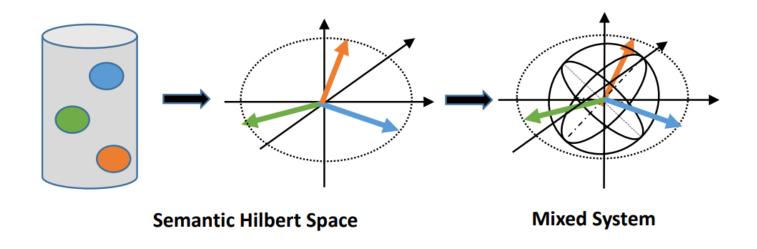
Li Qiuchi, Uprety Sagar, Wang Benyou , Song Dawei <u>Quantum-inspired Complex Word Embedding</u>, ACL 2018 3rd <u>Workshop on Representation Learning for NLP</u>, ACL 2018 RepL4NLP

Hilbert Semantic Space

- Unify these four things in a complex-valued space
 - Sememes
 - Word
 - Phrase/Sentence/Documents
 - Topic as measurements

Definition

- Sememes as basic state
- Word as superstition state
- Sentence as mixed system

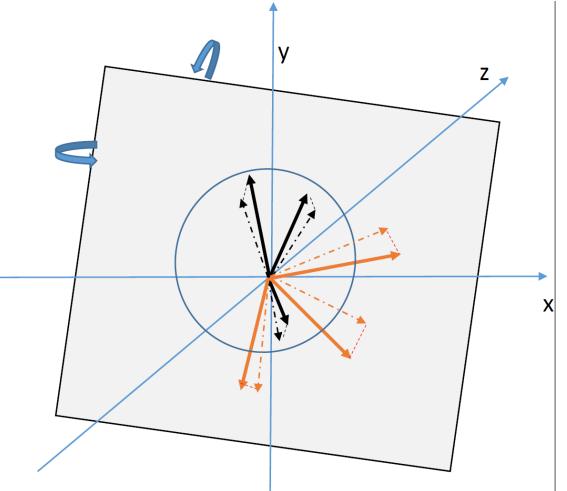


Complex word embedding

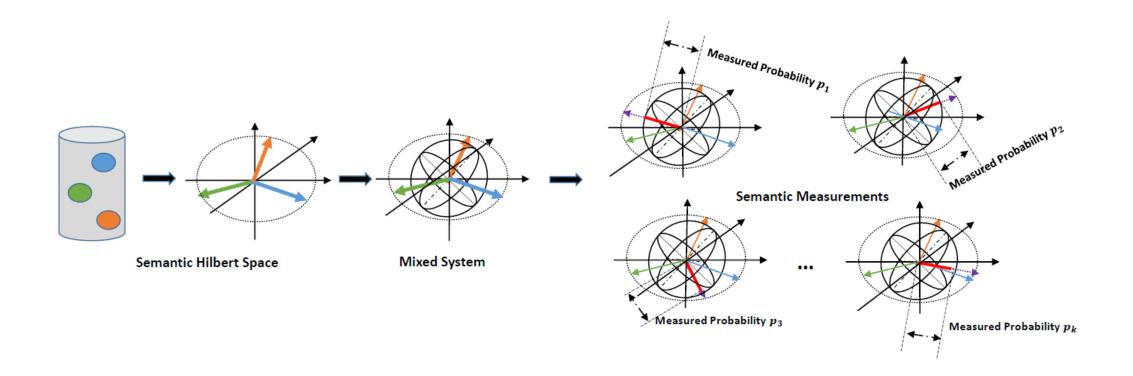
- Dimension: the number of
- Length : weight
- Amplitude part: meaning
- Phase part: polarity ?

- How to infer the overall polarity from the polarity of each words?
 - Is there any quantum phenomena here ?

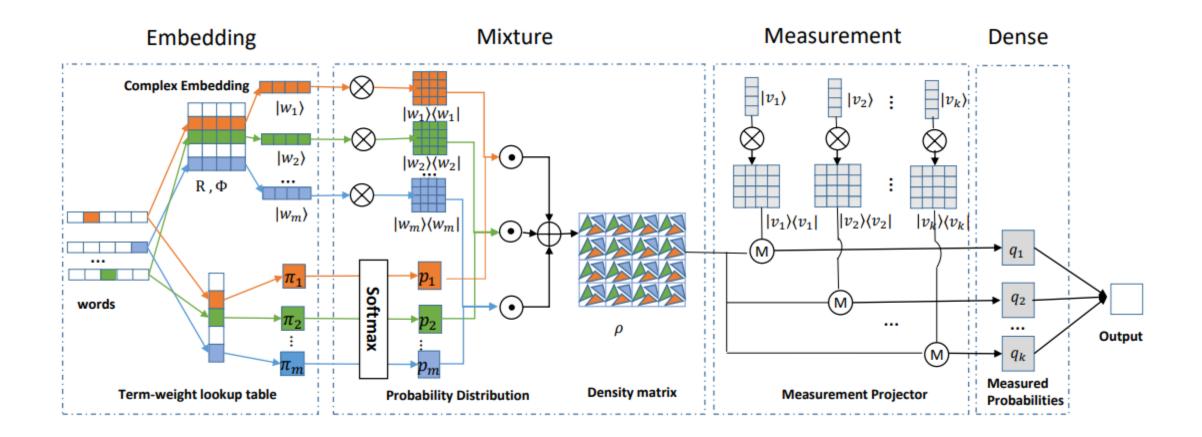
Trainable Measurements for sentence classification



Framework



Implements



Physical meaning for our models

Components	Traditional DNN	NNQLM [56]	QPDN
Input embedding	arbitrary real vector	arbitrary real vector	unit complex vector, corresponding to superposition state
input embedding	(-∞, ∞)	(−∞, ∞)	$\{w w \in C^n, w _2 = 1\}$
Low lovel representation	arbitrary real vector	fake, real-valued density matrix	density matrix, corresponding to mixed state
Low-level representation	(-∞, ∞)	$\{\rho \rho \in \mathcal{R}^{n*n}\},\$	$\{\rho \rho = \rho^*, tr(\rho) = 1, \mu \rho \mu^T > 0 \forall \mu \neq \overrightarrow{0}, \rho \in C^{n*n}\},\$
Abstraction	CNN/RNN/Attention	CNN	measurement vector, corresponding to measurement
Abstraction	(-∞, ∞)	(−∞, ∞)	$\{w w \in C^n, w _2 = 1\}$
High-level representation	arbitrary real vector	arbitrary real vector	real-valued probability, corresponding to measurement result
righ-level representation	(-∞, ∞)	(−∞, ∞)	(0, 1)

Table 3: Physical meaning and constraint for each component

Experiments

Table 2: Experiment Results in percentage(%). The best performed value (except for CNN/LSTM) for each dataset is in bold.

Model	CR	MPQA	MR	SST	SUBJ	TREC
Uni-TFIDF	79.2	82.4	73.7	-	90.3	85.0
Word2vec	79.8	88.3	77.7	79.7	90.9	83.6
FastText [28]	78.9	87.4	76.5	78.8	91.6	81.8
Sent2Vec [42]	79.1	87.2	76.3	80.2	91.2	85.8
CaptionRep [21]	69.3	70.8	61.9	-	77.4	72.2
DictRep [22]	78.7	87.2	76.7	-	90.7	81.0
Ours: QPDN	81.0	87.0	80.1	83.9	92.7	88.2
CNN [29]	81.5	89.4	81.1	88.1	93.6	92.4
BiLSTM [16]	81.3	88.7	77.5	80.7	89.6	85.2

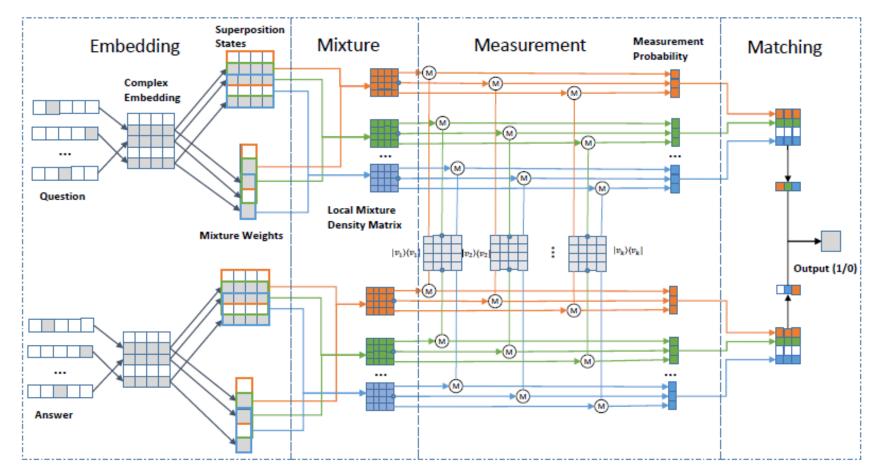
Case study for our measurement

Table 7: The learned measurement for dataset MR. They are selected according to nearest words for a measurement vector in Semantic Hibert Space

Measurement	Selected neighborhood words
1	change, months, upscale, recently, aftermath
2	compelled, promised, conspire, convince, trusting
3	goo, vez, errol, esperanza, ana
4	ice, heal, blessedly, sustains, make
5	continue, warned, preposterousness, adding, falseness

Implements for matching

Figure 1: Architecture of Complex-valued Network for Matching. M means a measurement operation according to Eq. 2.



Case study

Table 7: The matching patterns for specific sentence pairs in TREC QA. The darker the color, the bigger weight the word is. The [and] denotes the possible border of the current sliding windows.

Question	Correct Answer
Who is the [president or chief executive of Amtrak]?	"Long-term success " said George Warrington , [Amtrak 's president and chief executive] ."
When [was Florence Nightingale born]?	,"On May 12 , 1820 , the founder of modern nursing , [Florence Nightingale , was born] in Florence , Italy ."
When [was the IFC established]?	[IFC was established in] 1956 as a member of the World Bank Group.
[how did women 's role change during the war]	, the [World Wars started a new era for women 's] opportunities to
[Why did the Heaven 's Gate members commit suicide]?,	This is not just a case of [members of the Heaven 's Gate cult committing suicide] to

Experiments

Table 3: Experiment Results on TREC QA Dataset. The best performed values are in bold.

Model	MAP	MRR
Bigram-CNN	0.5476	0.6437
LSTM-3L-BM25	0.7134	0.7913
LSTM-CNN-attn	0.7279	0.8322
aNMM	0.7495	0.8109
MP-CNN	0.7770	0.8360
CNTN	0.7278	0.7831
PWIM	0.7588	0.8219
QLM	0.6780	0.7260
NNQLM-I	0.6791	0.7529
NNQLM-II	0.7589	0.8254
CNM	0.7701	0.8591
Over NNQLM-II	1.48%↑	4.08% ↑

Table 4: Experiment Results on Yahoo QA Dataset. The best performed values are in bold.

Model	P@1	MRR
Okapi BM-25	0.2250	0.4927
LSTM	0.4875	0.6829
CNN	0.4125	0.6323
CNTN	0.4654	0.6687
QLM	0.3950	0.6040
NNQLM-I	0.4290	0.6340
NNQLM-II	0.4660	0.6730
CNM	0.4880	0.6845
Over NNQLM-II	4.72% ↑	1.45% ↑

Table 5: Experiment Results on WikiQA Dataset. The best performed values for each dataset are in bold.

Model	MAP	MRR
Bigram-CNN	0.6190	0.6281
BILSTM	0.6557	0.6695
LSTM-attn	0.6639	0.6828
CNN	0.6701	0.6822
QLM	0.5120	0.5150
NNQLM-I	0.5462	0.5574
NNQLM-II	0.6496	0.6594
CNM	0.6548	0.6664
Over NNQLM-II	1.01% ↑	1.01% ↑

Weights

Table 6: Selected learned important words in TREC QA. All words are lower.

	Selected words
Important	studio, president, women, philosophy scandinavian, washingtonian, berliner, championship defiance, reporting, adjusted, jarred
Unimportant	71.2, 5.5, 4m, 296036, 3.5 may, be, all, born movements, economists, revenues, computers

Learned measurements

Table 8: Selected learned measurements for TREC QA. They were selected according to nearest words for a measurement vector in Semantic Hilbert Space. All the words are lower.

	Selected neighborhood words for a measurement vector
1	andes, nagoya, inter-american, low-caste, kazakhstan
2	cools, injection, boiling, adrift
3	andrews, paul, manson, bair
4	historically, 19th-century, genetic, hatchback, shipbuilding
5	missile, exile, rebellion, darkness

Ablation Test

Table 9: Ablation Test. The values in parenthesis are the performance difference between the model and CNM.

FastText-MaxPool $0.6659 (0.1042\downarrow)$ $0.7152 (0.1439\downarrow)$ CNM-Real $0.7112 (0.0589\downarrow)$ $0.7922 (0.0659\downarrow)$ CNM-Global-Mixture $0.6968 (0.0733\downarrow)$ $0.7829 (0.0762\downarrow)$ CNM-trace-inner-product $0.6952 (0.0749\downarrow)$ $0.7688 (0.0903\downarrow)$ CNM 0.7701 0.8591	Setting	MAP	MRR
$\begin{array}{llllllllllllllllllllllllllllllllllll$	FastText-MaxPool	0.6659 (0.1042↓)	0.7152 (0.1439↓)
CNM-trace-inner-product 0.6952 (0.0749↓) 0.7688 (0.0903↓)	CNM-Real	0.7112 (0.0589↓)	0.7922 (0.0659↓)
1	CNM-Global-Mixture	0.6968 (0.0733↓)	0.7829 (0.0762↓)
CNM 0.7701 0.8591	CNM-trace-inner-product	0.6952 (0.0749↓)	0.7688 (0.0903↓)
	CNM	0.7701	0.8591

Potential ideas

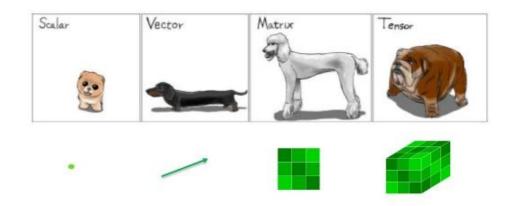
- Representation based on vector space
 - Deep investigation of **complex** vector space
 - Semantic Hilbert vector space for interpretable NN like Capsule
 - Overview of word embedding
- Dynamics in vector space
 - Evolved density matrix for language model
 - Dynamic word embedding via tensor decomposition
 - Investigate the dynamics with time-aware multi-turn dialogue

Ideas

- Dynamics for thematic issues
- Evolved Density matrix for language model

Dynamics for thematic issues

- Concatenate the Document-Term or Term-Term Co-occurrence as a Tensor
 - $[M_{t_1}, M_{t_2}, ..., M_{t_T}]$ as $T_{t,d,w}$, 3-d Tensor, where M_{t_1} is the D-W matrix.



- Tensor composition/factorization machine for time-aware word embedding
 - Obtain the neighbor words of "nuclear" in different time stamp.

Linking embedding with topic/thematic issue

- For a topic, it is usually considered as a distribution of words
 p⁽ⁱ⁾ = p(p_{w1}, p_{w1}, ... p_{w|v|})
- For a word embedding, its neighbor has a well-designed distance, we could also get a distribution as $p_{w_j} = \frac{e^{d_{ij}}}{\sum e^{d_{ij}}}$.
- In a sense, word embedding is considered lower-level topic

Evolved Density matrix for language model

Algorithm 1 Training of Quantum Memory Network

- Input: m-dimension word vectors E with size |V| * mA assisted hidden vector h for measurement A given word sequence $S = \{w_1, w_2, ..., w_n\}$ A initial density matrix ρ_0
- 1: Initialise $\rho = \rho_0$.
- 2: Pretrain embedding and grantee the unit length.
- 3: repeat
- 4: for i : n do
- 5: Look up the unit word vector e_{w_i} for word w_i .
- 6: Calculate the bias of the weak measurement by Eq. (1).
- 7: Update the new density matrix by Eq. (2).
- 8: Back propagation by loss shown in Eq. (3).
- 9: end for
- 10: until Traversal all the tokens in current sentence.

1.
$$\alpha = \langle h | e_{w_i} \rangle^2$$

2.
$$\rho^{(t)} = U \rho^{(t-1)} U^* * \alpha + | e_{w_i} \rangle \langle e_{w_i} | * (1 - \alpha)$$

3.
$$p_{w_j} = tr(\rho | e_{w_j} \rangle \langle e_{w_j} |)$$