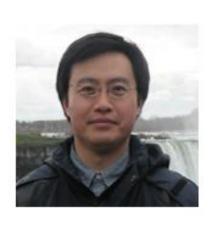
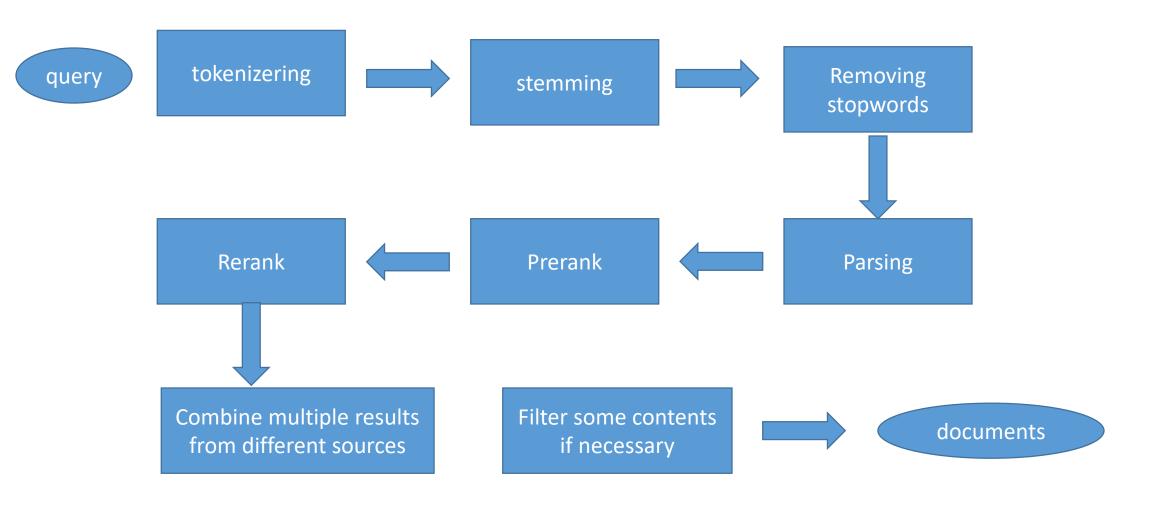


Exploring Interpretable Neural Network by Quantum representation

Benyou Wang, Qiuchi Li, Prayag Tiwari, Massimo Melucci University of Padova

Done with the collaboration





What is Interpretability

- Post-hoc explanations
 - Take a learned model and draw some kind of useful insights
 - E.g. Visualization in machine translation [Liu Yang & Maosong Sun ACL 2017]

- Transparency
 - Targeting ``how does the model work?" and seeks to provide some way to understand the core mechanisms
 - E.g. Capsule Network [Hinton NIPS 2017]

An Pipeline example for text processing

Transparency in end-to-end Paradigm

https://www.youtube.com/watch?v=TYpBJ71VW9g

End to end mechanism

- ✓ Less accumulating error
- ✓ Less involvement with Human beings
- ✓ Improve performance with shared features of the downstream tasks and upstream tasks

- Hard to adjust
- Hard to transfer
- Hard to understand

We need End to End mechanism, but in a fine-grained way

Design each subcomponents in the End-2-end architecture with a good background of the task

 Both language understanding and artificial intelligence require being able to understand bigger things from knowing about smaller parts

Christopher Manning 2017

Motivations

• Design self-explainable subcomponents in end2end network

• Provides more **transparency** from the network

 Theoretical explanations for why neural network works or why it dose not work

Contents

- End to End language model for QA [AAAI 2018]
- Quantum Many body function for language model in QA [CIKM 2018]
- Quantum-inspired word Embedding [ACL REP4NLP 2018]
- Hibert Semantic Space [In process]


End-2-end Language model for QA

Matching with two matrices

- $tr(\rho_1\rho_2)$
- CNN over $\rho_1 \rho_2$

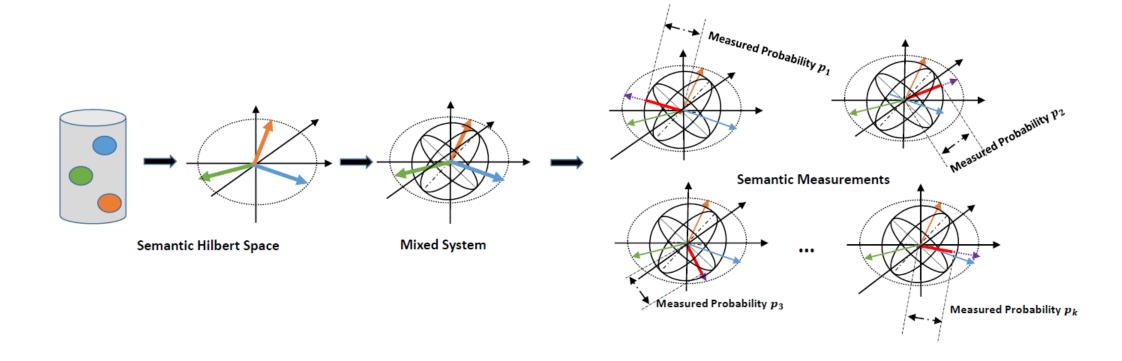
Quantum many-body function for LM

Use CNN to approximate Tensor Decomposition in the projection of Quantum Many-Body Language Function

Peng Zhang, Zhan Su, Lipeng Zhang, **Benyou Wang**, Dawei Song. 2018. A Quantum Many-body Wave Function Inspired Language Modeling Approach, **CIKM 2018**

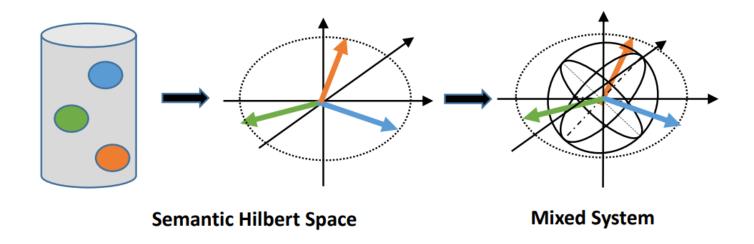
Complex word-embedding

Super-linearity superposition with phase


$$z^* = z_1 + z_2 = r_1 e^{i\theta_1} + r_2 e^{i\theta_2}$$

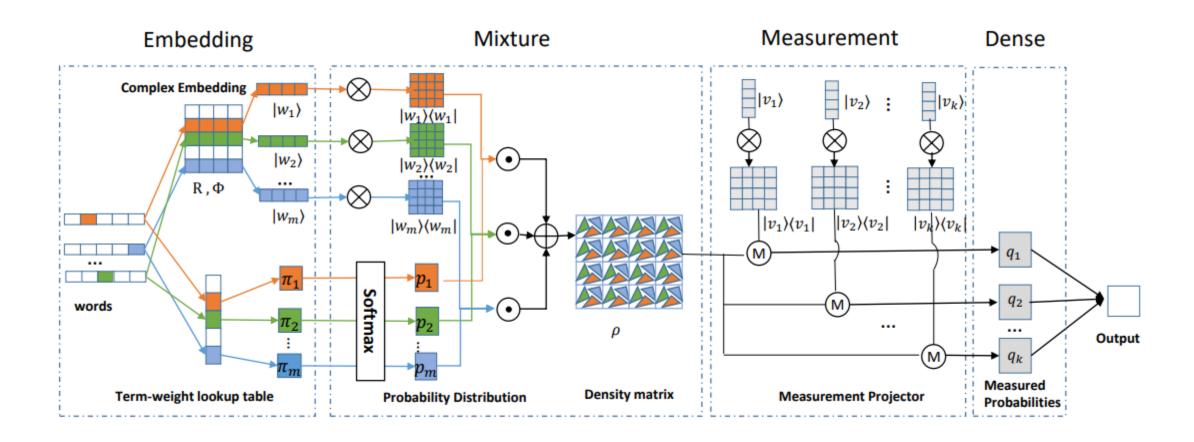
$$= \sqrt{r_1^2 + r_2^2 + 2r_1 r_2 \cos(\theta_2 - \theta_1)} \times e^{i \arctan\left(\frac{r_1 \sin(\theta_1) + r_2 \sin(\theta_2)}{r_1 \cos(\theta_1) + r_2 \cos(\theta_2)}\right)}$$

Hibert Semantic Space


- Unify these four things in a complex-valued space
 - Semeses
 - Word
 - Phrase/Sentence/Documents
 - Topic as measurements

Framework

Definition


- Semeses as basic state
- Word as superstition state
- Sentence as mixed system

Trainable Measurements for sentence classification

Implements

Physical meaning for our models

Table 3: Physical meaning and constraint for each component

Components	Traditional DNN	NNQLM [56]	QPDN
Input embedding	arbitrary real vector	arbitrary real vector	unit complex vector, corresponding to superposition state
input embedding	$(-\infty, \infty)$	$(-\infty, \infty)$	$\{w w\in C^n, w _2=1\}$
Low-level representation	arbitrary real vector	fake, real-valued density matrix	density matrix, corresponding to mixed state
	$(-\infty, \infty)$	$\{\rho \rho \in \mathcal{R}^{n*n}\},\$	$\{\rho \rho = \rho^*, tr(\rho) = 1, \mu \rho \mu^T > 0 \ \forall \mu \neq \overrightarrow{0}, \rho \in C^{n*n} \},$
Abstraction	CNN/RNN/Attention	CNN	measurement vector, corresponding to measurement
Abstraction	$(-\infty, \infty)$	$(-\infty, \infty)$	$\{w w\in C^n, w _2=1\}$
High-level representation	arbitrary real vector	arbitrary real vector	real-valued probability, corresponding to measurement result
	(−∞, ∞)	(−∞, ∞)	(0, 1)

Experiments

Table 2: Experiment Results in percentage(%). The best performed value (except for CNN/LSTM) for each dataset is in bold.

Model	CR	MPQA	MR	SST	SUBJ	TREC
Uni-TFIDF	79.2	82.4	73.7	-	90.3	85.0
Word2vec	79.8	88.3	77.7	79.7	90.9	83.6
FastText [28]	78.9	87.4	76.5	78.8	91.6	81.8
Sent2Vec [42]	79.1	87.2	76.3	80.2	91.2	85.8
CaptionRep [21]	69.3	70.8	61.9	-	77.4	72.2
DictRep [22]	78.7	87.2	76.7	-	90.7	81.0
Ours: QPDN	81.0	87.0	80.1	83.9	92.7	88.2
CNN [29]	81.5	89.4	81.1	88.1	93.6	92.4
BiLSTM [16]	81.3	88.7	77.5	80.7	89.6	85.2

Case study for our measurement

Table 7: The learned measurement for dataset MR. They are selected according to nearest words for a measurement vector in Semantic Hibert Space

Measurement	Selected neighborhood words
1	change, months, upscale, recently, aftermath
2	compelled, promised, conspire, convince, trusting
3	goo, vez, errol, esperanza, ana
4	ice, heal, blessedly, sustains, make
5	continue, warned, preposterousness, adding, falseness

Conclusion

- More concrete physical meaning
- Self-explainable subcomponents
- More constrain for the subcomponents
- Guided by Quantum probability theory

Future works with this topic

• Explore high-dimension tensor network with Quantum representation

Capsule Network with Quantum insights