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Deep and shadow Learning



CNN, one typical NN of DL

Empirically, the deeper, the better?

Expressive power of depth – the driving force behind Deep Learning



Not only performance, but also interpretability

performance

interpretability

The ImageNet challenge ended in 2017. http://image-net.org/challenges/LSVRC/2017/



Questions

Why the deeper, 
the better?



Expressive power of DL with a tensor analysis

• Link CNN to Tensor Decomposition
• Shadow CNN

• Deep CNN

• Theorem of Network Capacity



CNN and Tensor Decomposition



New hypotheses

…

𝜆0000𝑓0 𝑥0 𝑓0 𝑥1 𝑓0 𝑥2 𝑓0(𝑥3)

𝜆1111𝑓1 𝑥0 𝑓1 𝑥1 𝑓1 𝑥2 𝑓1(𝑥3)

𝜆0010𝑓0 𝑥0 𝑓0 𝑥1 𝑓1 𝑥2 𝑓0(𝑥3)

𝜆0011𝑓0 𝑥0 𝑓0 𝑥1 𝑓1 𝑥2 𝑓1(𝑥3)

𝜆0100𝑓0 𝑥0 𝑓1 𝑥1 𝑓0 𝑥2 𝑓0(𝑥3)

𝜆0001𝑓0 𝑥1 𝑓0 𝑥1 𝑓0 𝑥2 𝑓1(𝑥3)

ℎ𝑦 𝑋 = ℎ𝑦 𝑥1, 𝑥2, … , 𝑥𝑁

=𝝀𝒅𝟏𝒅𝟐,…,𝒅𝒏ෑ

𝑖=1

𝑁

𝑓𝜃𝑑𝑖(𝑥𝑖)

Examples of two 
representation functions, 𝑓1, 𝑓2 ∶ 𝑅

𝑠 → 𝑅
Natural choices for this family may be radial 
basis function(Gaussians)



Representation layer

• ℎ𝑦 𝑋 = ℎ𝑦 𝑥1, 𝑥2, … , 𝑥𝑁 = σ𝝀𝒅𝟏𝒅𝟐,…,𝒅𝒏 ς𝑖=1
𝑁 𝑓𝜃𝑑𝑖(𝑥𝑖)

𝒇𝟏 𝒇𝟐 … 𝒇𝒎

𝒙𝟏

𝒙𝟐

…

𝒙𝑵

A tensor with 𝑀𝑁 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 ς𝑖=1
𝑁 𝑓𝜃𝑑𝑖(𝑥𝑖)

A tensor with 𝑀𝑁elements 



Tensor



Tensor
Tensor is high-dimensional array 𝐴 ∈ 𝑅𝑀1×𝑀2×...𝑀𝑁

With a index/location  {𝑑1, 𝑑2, … 𝑑𝑁} ∈ 𝐼 we can get an element 𝜆𝑑1𝑑2…𝑑𝑛 where 𝑑1 ∈ 𝑀1 , 𝑑𝑁 ∈ [𝑀_𝑛]

Fiber is high-dimensional analogue of column/row in matrix, for a 3-dimentional tensor, they are 𝐴:,𝑖2,𝑖3 , 𝐴𝑖1,:,𝑖3 and 

𝐴𝑖1,𝑖2,:,

Slice is high-dimensional sections of a tensor, for a 3-dimentional tensor, they are 𝐴𝑖1,:,: , 𝐴:,𝑖2,:, and𝐴:,:,𝑖3



Tensor

Matricization of A w.r.t the partition (I, J), i.e. I and J are disjoint subsets of [N] whose union is [N], 

where 𝐼 = 𝑖1, 𝑖2, … , 𝑖 𝐼 , 𝑖1 < 𝑖2 < ⋯ < 𝑖 𝐼 and similarly J = 𝑗1, 𝑗2, … , 𝑗 𝐼 , 𝑗1 < 𝑗2 < ⋯ < 𝑗 𝐽
is denoted as 𝐴

𝐼,𝐽
, which is a ς𝑡=1

|𝐼|
𝑀𝑖𝑡 − 𝑏𝑦 − ς𝑡=1

|𝐽|
𝑀𝑗𝑡 matrix holding the entries of A such that 𝜆𝑑1𝑑2…𝑑𝑛 is 

placed in row index 1 + σ𝑡−1
|𝐼|

(𝑑𝑖𝑡 − 1)ς𝑡′=𝑡+1
|𝐼|

𝑀𝑖𝑡
′ and column index 1 + σ𝑡−1

|𝐽|
(𝑑𝑗𝑡 − 1)ς𝑡′=𝑡+1

|𝐽|
𝑀𝑗𝑡

′

Tensor product (also named Kronecker product for matrix), denoted by ⊗,  for example,  𝐴 ∈ 𝑅𝑀1×…𝑀𝑃 and
𝐵 ∈ 𝑅𝑀𝑃+1×⋯×𝑀𝑃+𝑄,    Order P and Q resp.
The tensor product between A and B is A⊗𝐵 ∈ 𝑅𝑀1×…𝑀𝑃+𝑄, 



Tensor Decomposition

CP Decomposition Tucker Decomposition

𝐴 =

𝑧=1

𝑍

𝑣𝑧
(1)

⊗⋯⊗𝑣𝑧
(𝑁)

order

The rank-one tensor is 
pure or elementary

Any tensor can be expressed 
as a sum of rank-1 tensors

Hierarchical Tucker Decomposition



The Tensor in the hypotheses

• ℎ𝑦 𝑋 = ℎ𝑦 𝑥1, 𝑥2, … , 𝑥𝑁 = σ𝝀𝒅𝟏𝒅𝟐,…,𝒅𝒏 ς𝑖=1
𝑁 𝑓𝜃𝑑𝑖(𝑥𝑖)

• A = 𝝀𝒅𝟏𝒅𝟐,…,𝒅𝒏 𝑑1,𝑑2,…,𝑑𝑛=1

𝑀
∈ 𝑅𝑀×𝑀×⋯𝑀 , 𝑖. 𝑒. 𝑅𝑀

𝑁
.

• Such exponential tensor is not easy to be learned or computed

• Thus we need to decompose the tensor.



Shallow CNN vs. CP Decomposition

With CP decomposition

𝐴 =

𝑧=1

𝑍

𝜆𝑦
𝑧𝒂𝑧,1 ⊗⋯⊗𝒂𝑧,𝑁

• ℎ𝑦 𝑋 = σ𝝀𝒅𝟏𝒅𝟐,…,𝒅𝒏 ς𝑖=1
𝑁 𝑓𝜃𝑑𝑖(𝑥𝑖) = σ𝑧=1

𝑍 𝜆𝑦
𝑧 ς𝑖=1

𝑁 (σ𝑑=1
𝑀 𝑎𝑑

𝑧,𝑖 𝑓𝜃𝑑(𝑥𝑖))

Convolution

Pooling (product pooling)

Multiple channels



Deep CNN vs. HT Decomposition
L = log2 N hidden layers, non-overlap convolution, size-2 pooling windows



In the case of Shared weights



Core Theory

Besides a negligible (zero measure) set, all functions that can be 
realized by a deep network of polynomial size, require exponential size 
in order to be realized, or even approximated, by a shallow network



Proof Sketch



Shadow CNN & CP compostion

𝐴 =

𝑧=1

𝑍

𝑣𝑧
(1)

⊗⋯⊗𝑣𝑧
(𝑁)

𝑅𝑎𝑛𝑘 [𝑣𝑧
(1)

⊗⋯⊗𝑣𝑧
(𝑁)

] = 1

Matricization is a 
linear operation



Deep CNN & 

𝜙1,𝑗,𝛾 ∈ 𝑅𝑀, 𝑡ℎ𝑢𝑠 r𝑎𝑛𝑘 [𝜙1,𝑗,𝛾] = min 𝑟0, 𝑀 , almost everywhere

(if 𝑎0,2𝑗−1,𝛼 ⊗𝑎0,2𝑗,𝛼
𝑗=1

2𝑙−1

are linearly independent) 

Rank (𝜙0,2𝑗−1,𝛼 ⊗𝜙0,2𝑗,𝛼) >=  min 𝑟0, 𝑀
2, almost everywhere

Rank (𝐴𝑦) >=  min 𝑟0, 𝑀
𝑁/2, almost everywhere
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https://wabyking.github.io/papers/www2019.pdf
https://wabyking.github.io/papers/toc.pdf

