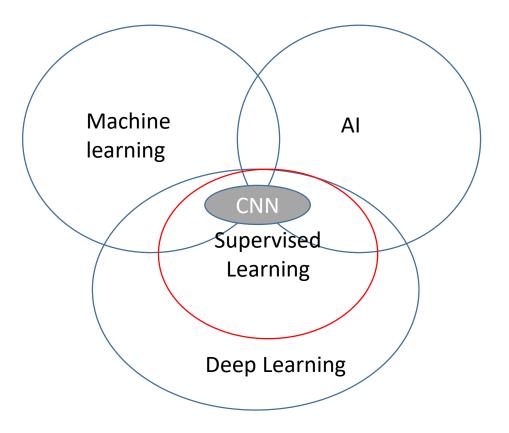
On the Expressive Power of Deep Learning: A Tensor Analysis

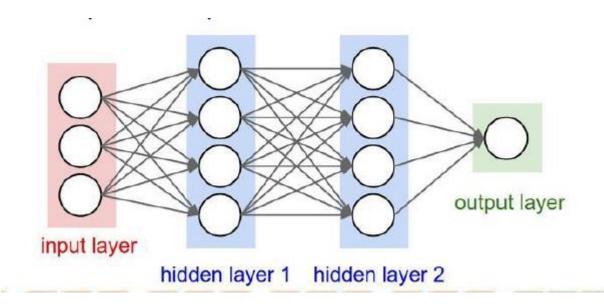
Benyou wang

Cohen N, Sharir O, Shashua A. On the expressive power of deep learning: A tensor analysis[C]//Conference on Learning Theory. 2016: 698-728.

Deep Learning

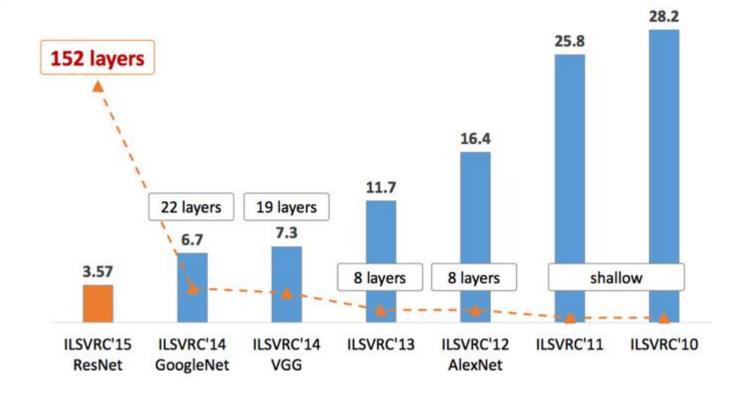


Deep and shadow Learning



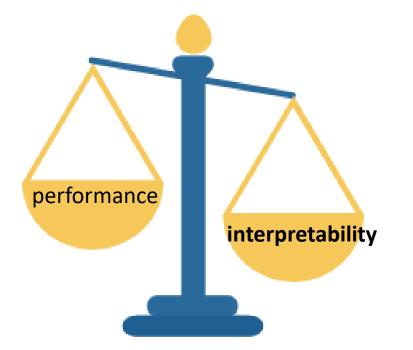
CNN, one typical NN of DL

Expressive power of depth – the driving force behind Deep Learning



Empirically, the deeper, the better?

Not only performance, but also interpretability



The ImageNet challenge ended in 2017. http://image-net.org/challenges/LSVRC/2017/

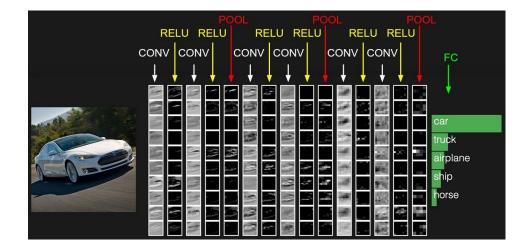
Questions

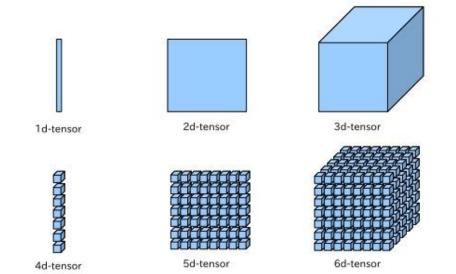
Why the deeper, the better?

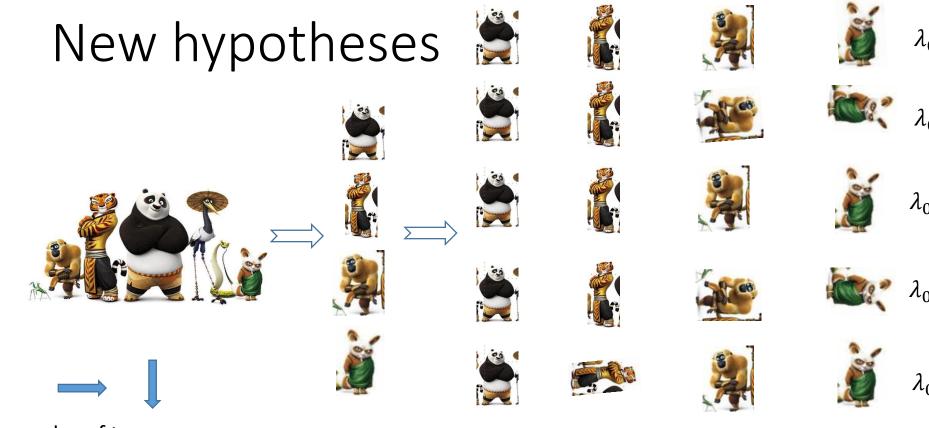
Expressive power of DL with a tensor analysis

- Link CNN to Tensor Decomposition
 - Shadow CNN
 - Deep CNN
- Theorem of Network Capacity

CNN and Tensor Decomposition

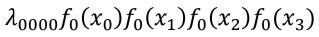






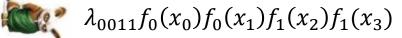
Examples of two representation functions, $f_1, f_2 : \mathbb{R}^s \to \mathbb{R}$ Natural choices for this family may be radial basis function(Gaussians)

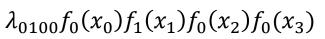
 $h_{y}(X) = h_{y}(x_{1}, x_{2}, \dots, x_{N})$ $= \sum \lambda_{d_{1}d_{2},\dots,d_{n}} \prod_{i=1}^{N} f_{\theta_{di}}(x_{i})$

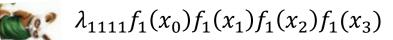


 $\lambda_{0001} f_0(x_1) f_0(x_1) f_0(x_2) f_1(x_3)$

 $\lambda_{0010}f_0(x_0)f_0(x_1)f_1(x_2)f_0(x_3)$



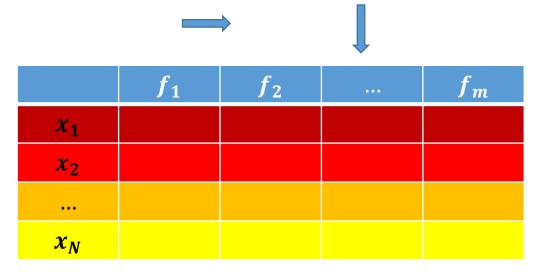




Representation layer

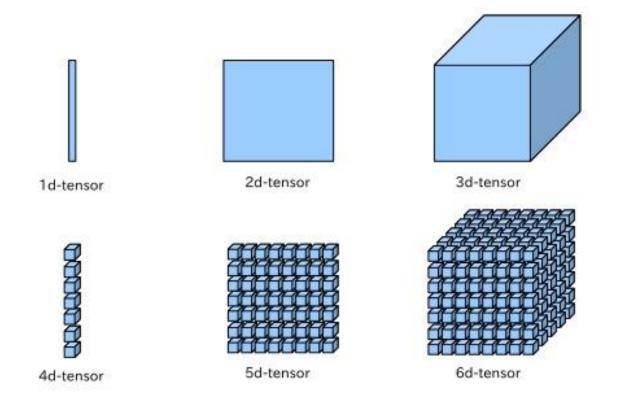
A **tensor** with M^N elements

•
$$h_y(X) = h_y(x_1, x_2, ..., x_N) = \sum \lambda_{d_1d_2,...,d_n} \prod_{i=1}^N f_{\theta_{di}}(x_i)$$



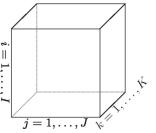
A **tensor** with M^N coefficients of $\prod_{i=1}^N f_{\theta_{di}}(x_i)$

Tensor



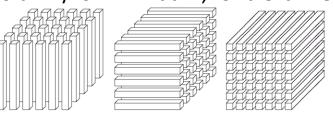
Tensor

Tensor is high-dimensional array $A \in R^{M_1 \times M_2 \times ...M_N}$ With a index/location $\{d_1, d_2, ..., d_N\} \in I$ we can get an element $\lambda_{d_1 d_2 ...d_n}$ where $d_1 \in [M_1], d_N \in [M_n]$

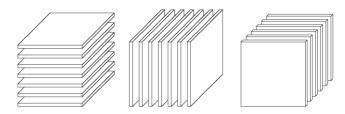


Fiber is high-dimensional analogue of column/row in matrix, for a 3-dimentional tensor, they are $A_{:,i_2,i_3}$, $A_{i_1,:,i_3}$ and

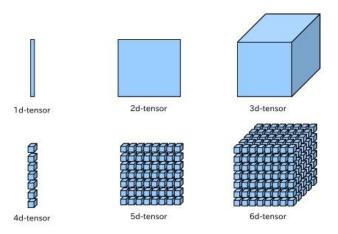
 $A_{i_1,i_2,:,}$



Slice is high-dimensional sections of a tensor, for a 3-dimentional tensor, they are A_{i_1,i_2} , $A_{:,i_2,:}$, and $A_{:,:,i_3}$



Tensor

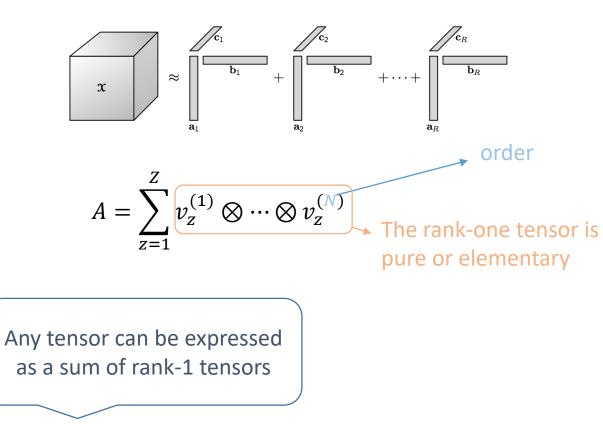


Matricization of A w.r.t the partition (I, J), i.e. I and J are disjoint subsets of [N] whose union is [N], where $I = \{i_1, i_2, ..., i_{|I|}\}, i_1 < i_2 < \cdots < i_{|I|}$ and similarly $J = \{j_1, j_2, ..., j_{|I|}\}, j_1 < j_2 < \cdots < j_{|J|}$ is denoted as $[[A]]_{I,J}$, which is a $\prod_{t=1}^{|I|} M_{i_t} - by - \prod_{t=1}^{|J|} M_{j_t}$ matrix holding the entries of A such that $\lambda_{d_1d_2...d_n}$ is placed in row index $1 + \sum_{t=1}^{|I|} (d_{i_t} - 1) \prod_{t'=t+1}^{|I|} M_{i'_t}$ and column index $1 + \sum_{t=1}^{|J|} (d_{j_t} - 1) \prod_{t'=t+1}^{|J|} M_{j'_t}$

Tensor product (also named Kronecker product for matrix), denoted by \otimes , for example, $A \in \mathbb{R}^{M_1 \times \dots M_P}$ and $B \in \mathbb{R}^{M_{P+1} \times \dots \times M_{P+Q}}$, Order P and Q resp. The tensor product between **A** and **B** is $A \otimes B \in \mathbb{R}^{M_1 \times \dots M_{P+Q}}$,

Tensor Decomposition

CP Decomposition



Tucker Decomposition



Hierarchical Tucker Decomposition

$$\begin{split} \phi^{1,j,\gamma} &= \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ & \cdots \\ \phi^{l,j,\gamma} &= \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \underbrace{\phi^{l-1,2j-1,\alpha}}_{\text{order } 2^{l-1}} \otimes \underbrace{\phi^{l-1,2j,\alpha}}_{\text{order } 2^{l-1}} \\ & \cdots \\ \phi^{L-1,j,\gamma} &= \sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,j,\gamma} \underbrace{\phi^{L-2,2j-1,\alpha}}_{\text{order } \frac{N}{4}} \otimes \underbrace{\phi^{L-2,2j,\alpha}}_{\text{order } \frac{N}{4}} \\ \mathcal{A}^{y} &= \sum_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L,y} \underbrace{\phi^{L-1,1,\alpha}}_{\text{order } \frac{N}{2}} \otimes \underbrace{\phi^{L-1,2,\alpha}}_{\text{order } \frac{N}{2}} \end{split}$$

The Tensor in the hypotheses

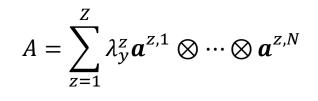
•
$$h_{y}(X) = h_{y}(x_{1}, x_{2}, ..., x_{N}) = \sum \lambda_{d_{1}d_{2},...,d_{n}} \prod_{i=1}^{N} f_{\theta_{di}}(x_{i})$$

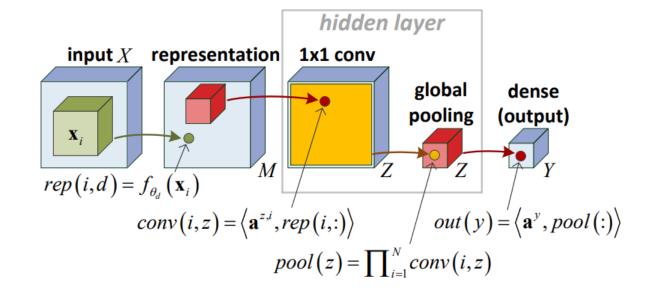
• A =
$$\{\lambda_{d_1d_2,...,d_n}\}_{d_1,d_2,...,d_n=1}^M \in R^{M \times M \times \cdots M}$$
, *i.e.* R^{M^N} .

- Such exponential tensor is not easy to be learned or computed
- Thus we need to **decompose** the tensor.

Shallow CNN vs. CP Decomposition

With CP decomposition



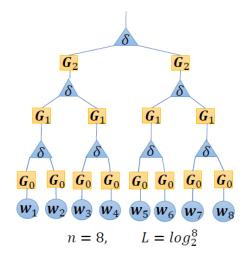


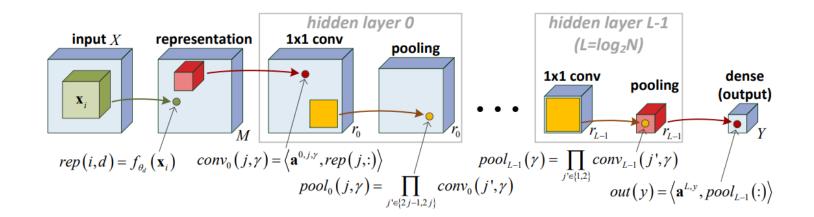
•
$$h_y(X) = \sum \lambda_{d_1d_2,...,d_n} \prod_{i=1}^N f_{\theta_{di}}(x_i) = \sum_{Z=1}^Z \lambda_y^Z \prod_{i=1}^N (\sum_{d=1}^M a_d^{Z,i} f_{\theta_d}(x_i))$$

Convolution
Pooling (product pooling)
Multiple channels

Deep CNN vs. HT Decomposition

L = log2 N hidden layers, non-overlap convolution, size-2 pooling windows





$$\begin{split} \phi^{1,j,\gamma} &= \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ & \cdots \\ \phi^{l,j,\gamma} &= \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ & \cdots \\ \mathcal{A}^{y} &= \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{L,1,y} \cdot \phi^{L-1,1,\alpha} \otimes \phi^{L-1,2,\alpha} \end{split}$$

In the case of **Shared** weights

For CP model, coefficient sharing amounts to setting $\mathbf{a}^z := \mathbf{a}^{z,1} = \cdots = \mathbf{a}^{z,N}$ in the CP decomposition (eq. 3), transforming the latter to a symmetric CP decomposition:

$$\mathcal{A}^{y} = \sum_{z=1}^{Z} a_{z}^{y} \cdot \underbrace{\mathbf{a}^{z} \otimes \cdots \otimes \mathbf{a}^{z}}_{N \text{ times}} \quad , \mathbf{a}^{z} \in \mathbb{R}^{M}, \mathbf{a}^{y} \in \mathbb{R}^{Z}$$

CP model with sharing is not universal (not all tensors \mathcal{A}^y are representable, no matter how large Z is allowed to be) – it can only represent symmetric tensors.

Core Theory

Besides a negligible (zero measure) set, all functions that can be realized by a **deep** network of **polynomial** size, require **exponential** size in order to be realized, or even approximated, by a **shallow** network

Proof Sketch

- $\llbracket \mathcal{A} \rrbracket$ arrangement of tensor \mathcal{A} as matrix (*matricization*)
- \odot Kronecker product for matrices. Holds: $rank(A \odot B) = rank(A) \cdot rank(B)$
- Relation between tensor and Kronecker products: $\llbracket \mathcal{A} \otimes \mathcal{B} \rrbracket = \llbracket \mathcal{A} \rrbracket \odot \llbracket \mathcal{B} \rrbracket$
- Implies: $\mathcal{A} = \sum_{z=1}^{Z} \lambda_z \mathbf{v}_1^{(z)} \otimes \cdots \otimes \mathbf{v}_{2^L}^{(z)} \Longrightarrow rank \llbracket \mathcal{A} \rrbracket \leq Z$
- By induction over I = 1...L, almost everywhere w.r.t. $\{\mathbf{a}^{l,j,\gamma}\}_{l,j,\gamma}$: $\forall j \in [N/2'], \gamma \in [r_l] : rank[\![\phi^{l,j,\gamma}]\!] \ge (\min\{r_0, M\})^{2'/2}$
 - <u>Base</u>: "SVD has maximal rank almost everywhere"
 - <u>Step</u>: rank [[A ⊗ B]] = rank([[A]] ⊙ [[B]]) = rank [[A]] · rank [[B]], and "linear combination preserves rank almost everywhere"

Shadow CNN & CP composition

$$A = \sum_{z=1}^{Z} v_{z}^{(1)} \otimes \cdots \otimes v_{z}^{(N)}$$

$$Rank [v_{z}^{(1)} \otimes \cdots \otimes v_{z}^{(N)}] = 1$$

$$Matricization is a linear operation$$

$$rank \left[\sum_{z=1}^{Z} \lambda_{z} \mathbf{v}_{1}^{(z)} \otimes \cdots \otimes \mathbf{v}_{2L}^{(z)} \right] = rank \sum_{z=1}^{Z} \lambda_{z} \left[\mathbf{v}_{1}^{(z)} \otimes \cdots \otimes \mathbf{v}_{2L}^{(z)} \right]$$

$$\leq \sum_{z=1}^{Z} rank \left[\mathbf{v}_{1}^{(z)} \otimes \cdots \otimes \mathbf{v}_{2L}^{(z)} \right] = Z$$

Deep CNN &

 $\phi^{1,j,\gamma} \in \mathbb{R}^M$, thus $\operatorname{rank}([\phi^{1,j,\gamma}]) = \min(r_0, M)$, almost everywhere (if $\{a^{0,2j-1,\alpha} \otimes a^{0,2j,\alpha}\}_{j=1}^{2^{l-1}}$ are linearly independent) $\overbrace{\phi^{1,j,\gamma}}^{\prime} = \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha}$ Rank $(\phi^{0,2j-1,\alpha} \otimes \phi^{0,2j,\alpha}) \ge \min(r_0, M)^2$, almost everywhere $\phi^{l,j,\gamma} = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \underbrace{ \phi^{l-1,2j-1,\alpha}}_{\text{order } 2^{l-1}} \otimes \underbrace{\phi^{l-1,2j,\alpha}}_{\text{order } 2^{l-1}}$ $\phi^{L-1,j,\gamma} \quad = \quad \sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,j,\gamma} \underbrace{\phi^{L-2,2j-1,\alpha}}_{\text{order } \frac{N}{4}} \otimes \underbrace{\phi^{L-2,2j,\alpha}}_{\text{order } \frac{N}{4}}$ $\mathcal{A}^{y} = \sum_{\alpha=1}^{L-1} a_{\alpha}^{L,y} \underbrace{\phi^{L-1,1,\alpha}}_{\text{order } \frac{N}{2}} \otimes \underbrace{\phi^{L-1,2,\alpha}}_{\text{order } \frac{N}{2}}$ Rank $(A^{\gamma}) \ge \min(r_0, M)^{N/2}$, almost everywhere

Publications

- Sentiment-Specific Embedding in Complex-valued Space, in process.
- Qiuchi Li*, Benyou Wang*, Massimo Melucci. A Complex-valued Network for Matching. NAACL 2019
- Benyou Wang*, Qiuchi Li*, Massimo Melucci, Dawei Song. <u>Semantic Hilbert Space for Text Representation</u> <u>Learning.</u> WWW 2019
- Wei Zhao*, Benyou Wang*, Min Yang, Jianbo Ye, Zhou Zhao, Xiaojun Chen, Ying Shen.. Leveraging Long and Short-term Information in Content-aware Movie Recommendation via Adversarial Training. IEEE Transactions on Cybernetics (TOC), 2019