Deep Learning for Language

e.g. Natural Language Processing and Information Retrieval

What is Machine Learning

Supervised Learning with label

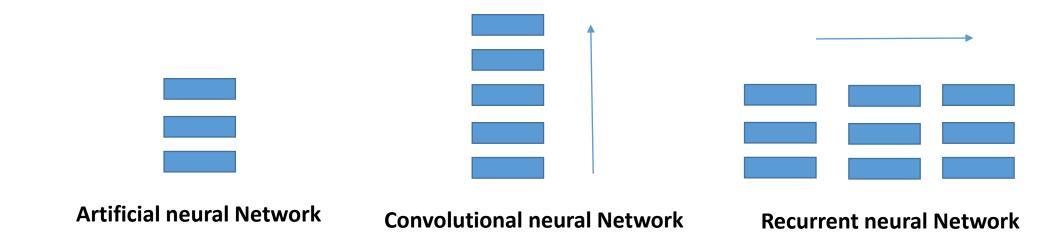
Unsupervised Learning without label

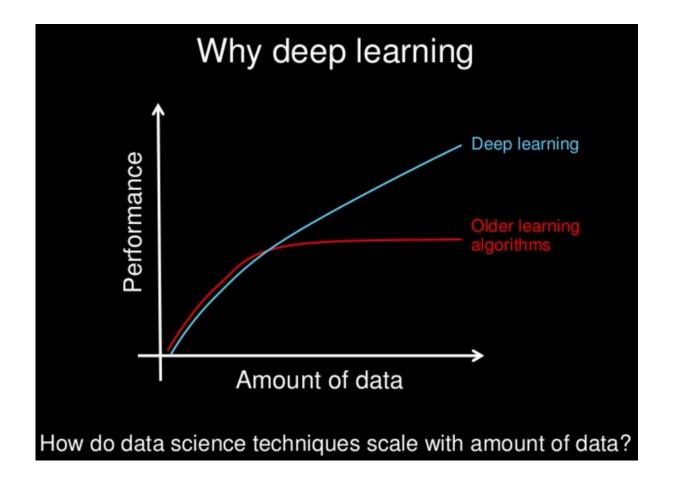
Reinforced Learning with delayed label.

Machine Learning

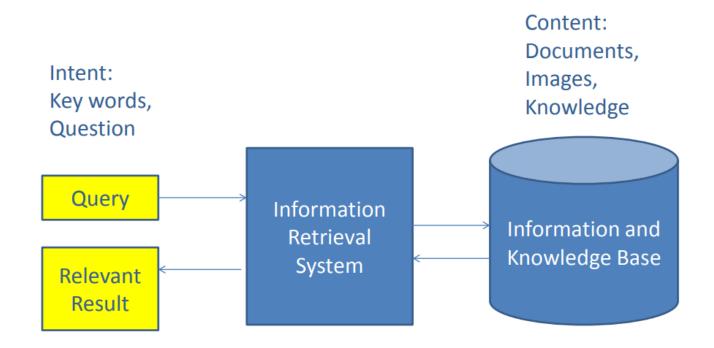
- Linear Regression
- Naïve Bayes
- Decision Tree
- Support vector machine
- Artificial neural Network

What is Deep Learning





IR background



Key Questions: How to Represent Intent and Content, How to Match Intent and Content

Traditional IR — Tfidf example

Query:

star wars the force awakens reviews

Document:

Star Wars: Episode VII
Three decades after the defeat of the Galactic Empire, a new threat arises.

$$\begin{array}{c|c}
q & d \\
\hline
\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & \xrightarrow{f(q,d)} & \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix} & f_{VSM}(q,d) = \frac{\langle q,d \rangle}{\|q\| \cdot \|d\|}$$

- Representing query and document as word vectors
- calculating cosine similarity between them

Modern IR — Learn to Rank

- Conducting query and document understanding
- Representing query and document as multiple feature vectors
- Calculating multiple matching scores between query and document
- Training ranker with matching scores as features using learning to rank

Features + Ranking

Features:

- Language model
- BM25
- Title/Snippet/Document
- Pagerank

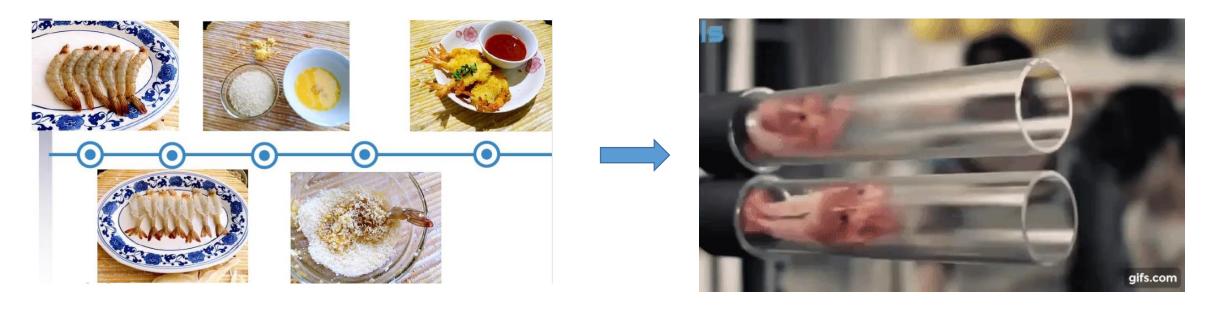
Ranking:

- Point-wise
- Pair-wise
- List-wise

Example of Mismatch

Query	Document	Term Matching	Semantic Matching
seattle best hotel	seattle best hotels	no	yes
pool schedule	swimmingpool schedule	no	yes
natural logarithm transformation	logarithm transformation	partial	yes
china kong	china hong kong	partial	no
why are windows so expensive	why are macs so expensive	partial	no

End-to-end



https://www.youtube.com/watch?v=TYpBJ71VW9g

The inputting features are also learnable/trainable

Trends for Neural IR

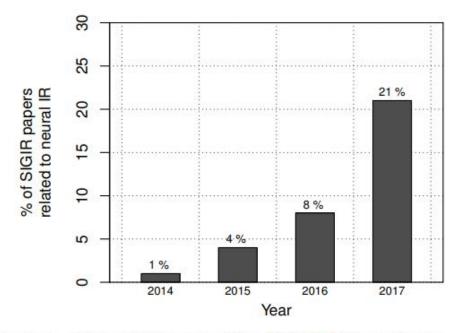
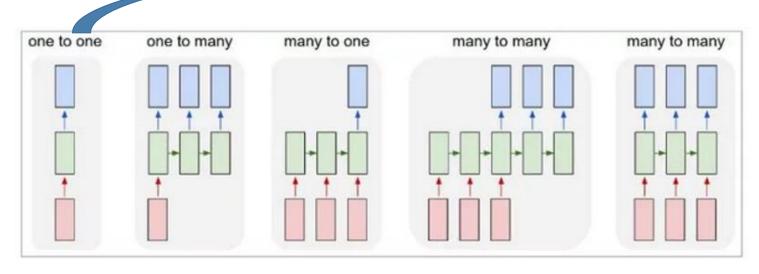
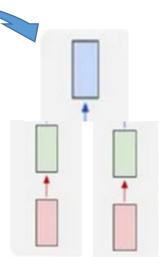


Figure 1: The percentage of neural IR papers at the ACM SIGIR conference—as determined by a manual inspection of the paper titles—shows a clear trend in the growing popularity of the field.

Tasks in IR/NLP





Classification: assigning a label to a string

$$s \rightarrow c$$

• Matching: matching two strings

$$s,t \rightarrow \mathbf{R}^+$$

• Translation: transforming one string to another

$$s \rightarrow t$$

• Structured prediction: mapping string to structure

$$s \rightarrow s'$$

Fundamental Demo In Code with PyTorch pseudo code

- Model = LSTM/CNN/Capsule/...
- text,lable = Dataset.nextBatch()
- representation = Model(text)
- Classification = FC(representation)
 FC: Mapping to label size
- Translation = Decode(representation)
- Matching = Cosine(representation1, representation2)
- Sequential_labelling = FCs(representations)

Background of Neural IR

• Trends of DL for IR

Word embedding

Neural network

• DL for IR/NLP

Localist representation

• BMW [1, 0, 0, 0, 0]

• Audi [0, 0, 0, 1, 0]

• Benz [0, 0, 1, 0, 0]

• Polo [0, 0, 0, 1, 0]

Size color ... unknown

[.3, .7, .2, .1, .5]

[.5, .3, .2, .1, .0]

[.2, .0, .31, .03, .01]

[.1, .1, .5, .5, 0.2]

Distributed representation

• BMW [1, 0, 0, 0, 0]

• Audi [0, 0, 0, 1, 0]

• Benz [0, 0, 1, 0, 0]

• Polo [0, 0, 0, 1, 0]

Size color ... unknown

[.3, .7, .2, .1, .5]

[.5, .3, .2, .1, .0]

[.2, .0, .31, .03, .01]

[.1, .1, .5, .5, 0.2]

Embedding

<u>Distributional hypothesis</u> linguistic items with similar distributions have similar meanings



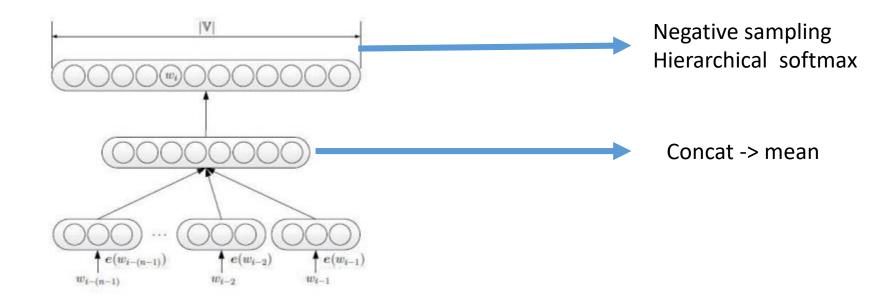
Life is complex. It has both real and imaginary parts

https://en.wikipedia.org/wiki/Distributional_semantics

How to get Distributed representation

- Matrix Factorization
 - Word-word Matrix
 - Document-word Matrix
 - PLSA
 - LDA
- Sample-based Prediction
 - NNLM
 - C & W
 - Word2vec

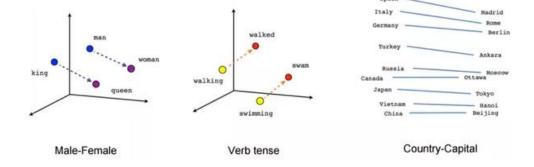
NNLM to Word2vec



Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of machine learning research, 2003, 3(Feb): 1137-1155. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

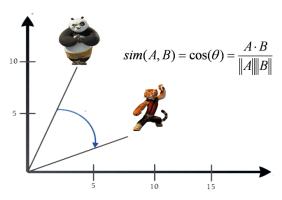
Advantage of word embedding

- Linguistic regulation
 - $\overrightarrow{king} \overrightarrow{man} = \overrightarrow{queen} \overrightarrow{woman}$



- Semantic matching
 - As the initial input Feature/Weight for NN

Cosine Similarity



Only Word Embedding?

Which is the most similar word of "Italy"?

Maybe "Germany" or "Pasta"?

You cannot guarantee that each similar word pair could help your matching?

Background of Neural IR

• Trends of DL for IR

Word embedding

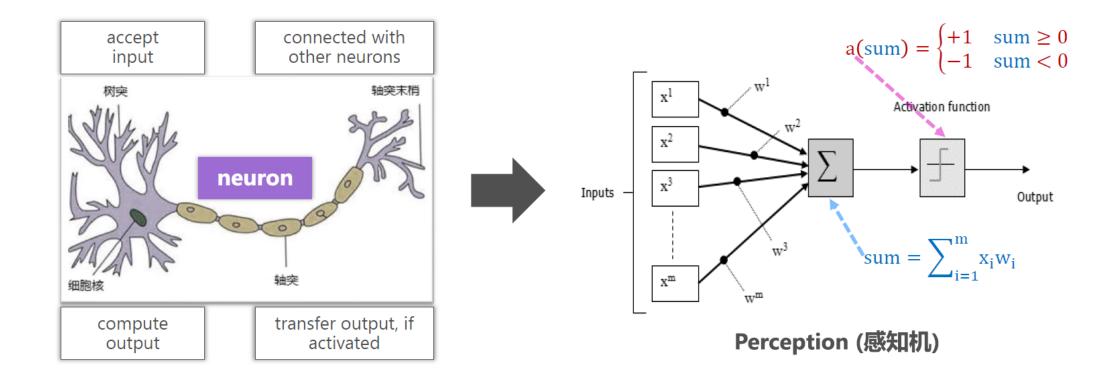
Neural network

• DL for IR/NLP

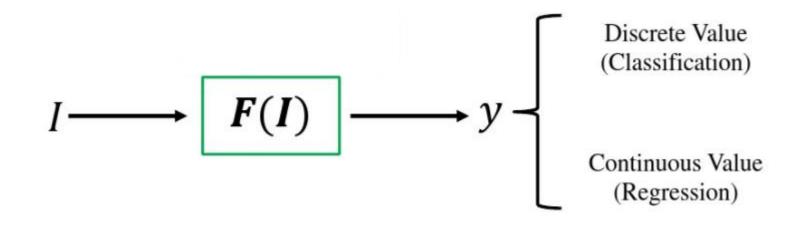
Neural Network

- MLP
- CNN
 - Shift/Space invariant
- Recurrent NN [LSTM/GUR]
 - Time-sensitive
- Recursive NN
 - Structure-sensitive
- Special Case
 - Seq2seq
 - GAN
 - Reinforced Learning

MLP

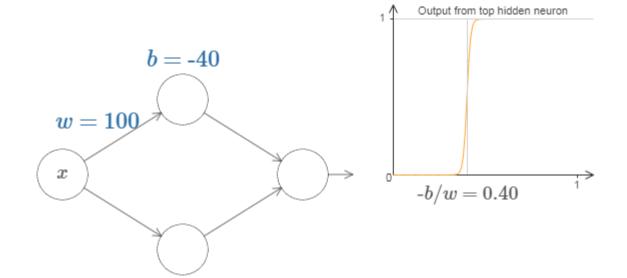


UAT in MLP



Multi-layer Non-linear Mapping -> Universal Approximation Theorem

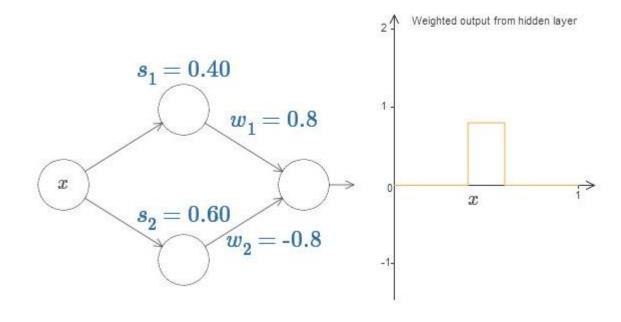
A sample of θ (wx+b)



$$s = -b/w$$
.

$$\sigma(wx+b)$$
, where $\sigma(z)\equiv 1/(1+e^{-z})$

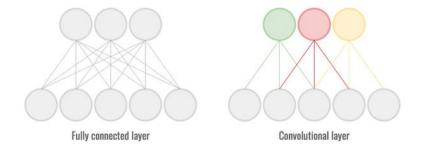
An another sample

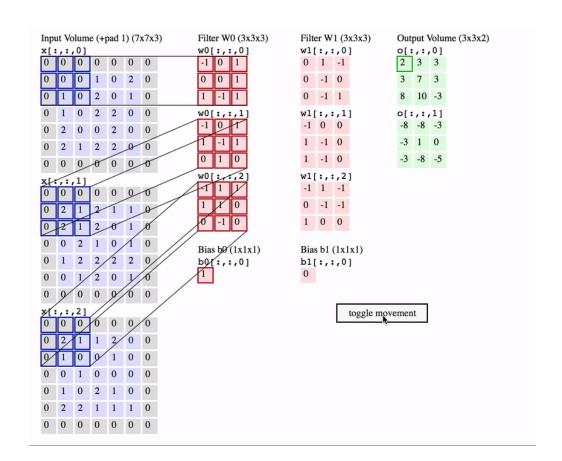


 $\sigma(wx+b)$, where $\sigma(z)\equiv 1/(1+e^{-z})$

From MLP to CNN

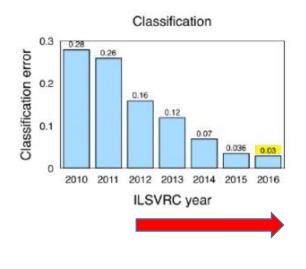
- Local connection
- Shared weight
- Pooling strategy





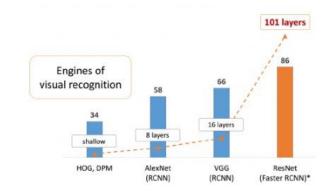
Deep NN in CV

Top 5 error in ImageNet classification

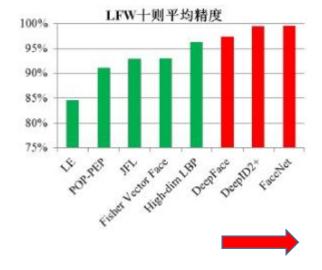


Deep NN

10-fold mean precision Face recognition LFW dataset



MAP in Pascal VOC visual recognition



End-2-end in CV

Tradition CV

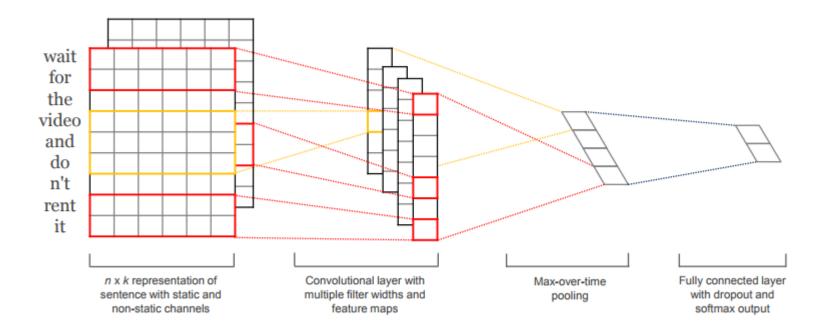
Modern CV: Unsupervised mid-representation

• DNN CV: end-2-end

CNN

- Basic CNN
- Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv:1404.2188, 2014
- Kim CNN
- VDCNN

CNN [kim EMNLP 2014]



Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	-	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	-	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	-	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	-	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	-	_	-	_	-	82.7	_
SVM _S (Silva et al., 2011)	_	_	_		95.0	_	

Figure 1: Model architecture with two channels for an example sentence.

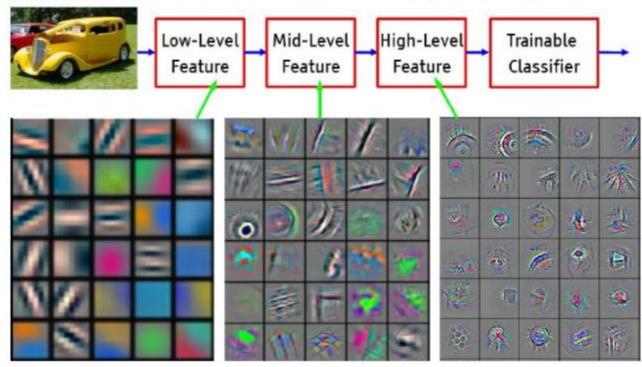
Go deeper or not?

- DEEP
 - Slower
 - Overfitting
 - More Parameters, more data need to feed
 - Hard for convergence
 - Highway network
 - Residual Block
 - Inception

- Shallow: one-layer
 - Fast
 - Less data, es. Fastext.

Go deeper or not?

- Image recognition: Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object
- **Text**: Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story
- **Speech**: Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Modified from Prof. LeCun and Prof. Bengio

Very Large CNN [Conneau EACL]

Corpus:	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
Method	n-TFIDF	n-TFIDF	n-TFIDF	ngrams	Conv	Conv+RNN	Conv	Conv
Author	[Zhang]	[Zhang]	[Zhang]	[Zhang]	[Zhang]	[Xiao]	[Zhang]	[Zhang]
Error	7.64	2.81	1.31	4.36	37.95*	28.26	40.43*	4.93*
[Yang]	-	-	-	-	-	24.2	36.4	-

Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data augmentation technique (marked with an *). Yang et al. (2016)'s hierarchical methods is particularly adapted to datasets whose samples contain multiple sentences.

Depth	Pooling	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
9	Convolution	10.17	4.22	1.64	5.01	37.63	28.10	38.52	4.94
9	KMaxPooling	9.83	3.58	1.56	5.27	38.04	28.24	39.19	5.69
9	MaxPooling	9.17	3.70	1.35	4.88	36.73	27.60	37.95	4.70
17	Convolution	9.29	3.94	1.42	4.96	36.10	27.35	37.50	4.53
17	KMaxPooling	9.39	3.51	1.61	5.05	37.41	28.25	38.81	5.43
17	MaxPooling	8.88	3.54	1.40	4.50	36.07	27.51	37.39	4.41
29	Convolution	9.36	3.61	1.36	4.35	35.28	27.17	37.58	4.28
29	KMaxPooling	8.67	3.18	1.41	4.63	37.00	27.16	38.39	4.94
29	MaxPooling	8.73	3.36	1.29	4.28	35.74	26.57	37.00	4.31

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.

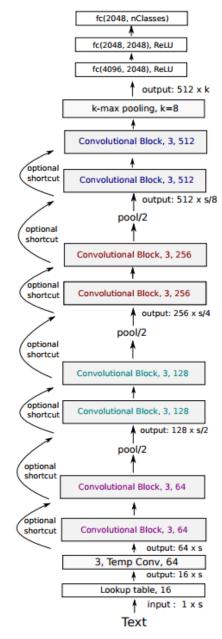


Figure 1: VDCNN architecture.

FASTEX [EACL 2017]

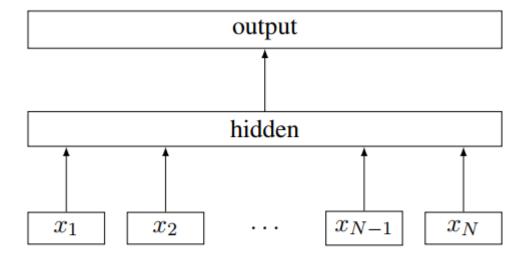
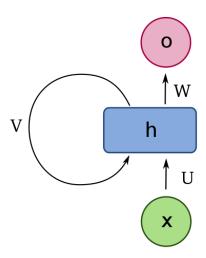


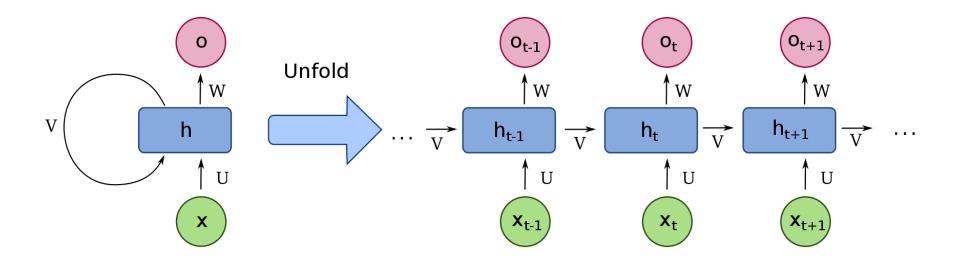
Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

Model	Yelp'13	Yelp'14	Yelp'15	IMDB
SVM+TF	59.8	61.8	62.4	40.5
CNN	59.7	61.0	61.5	37.5
Conv-GRNN	63.7	65.5	66.0	42.5
LSTM-GRNN	65.1	67.1	67.6	45.3
fastText	64.2	66.2	66.6	45.2

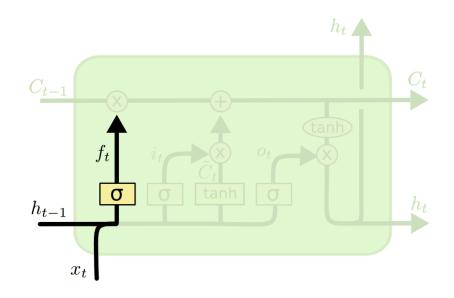
RNN



RNN

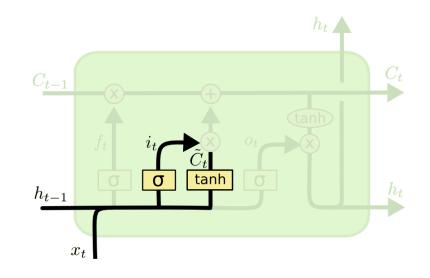


Forget gate



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

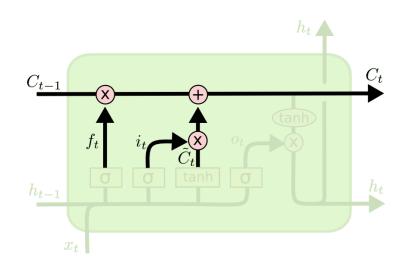
Input gate



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

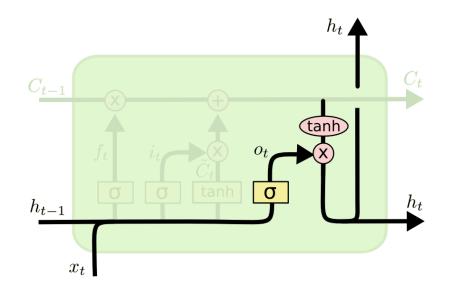
replace tanh with softsign (not softmax) activation for prevent overfitting

Forgotten + input



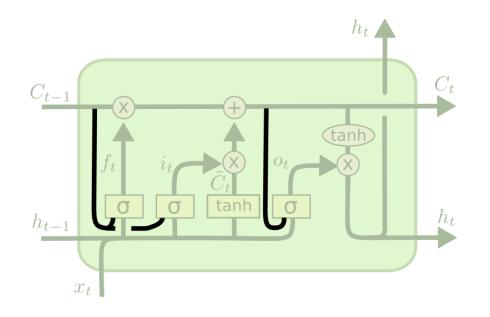
$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM Variants: Peephole connections

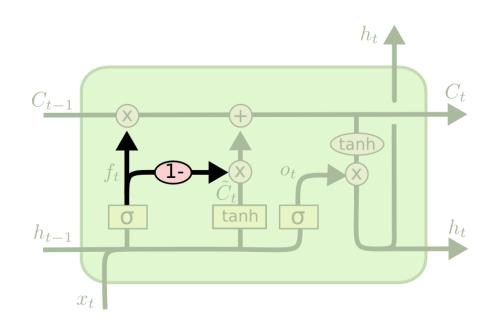


$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

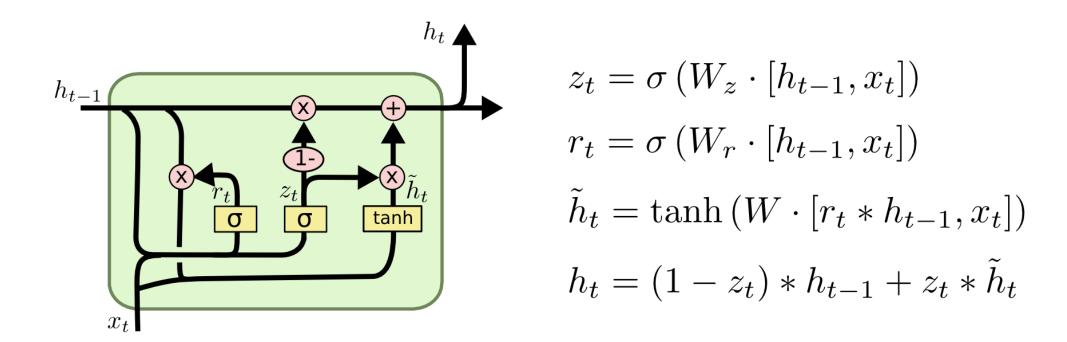
$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

LSTM Variants: coupled forget and input gates



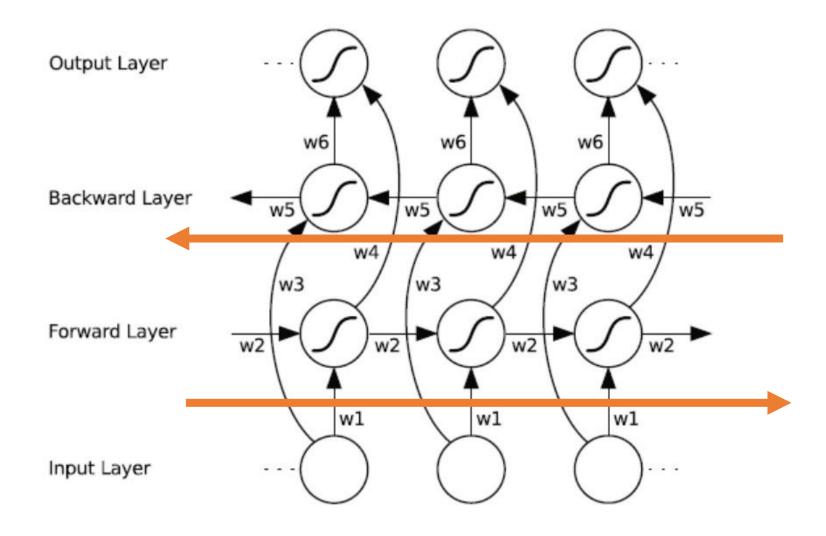
$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM Variants: GRU

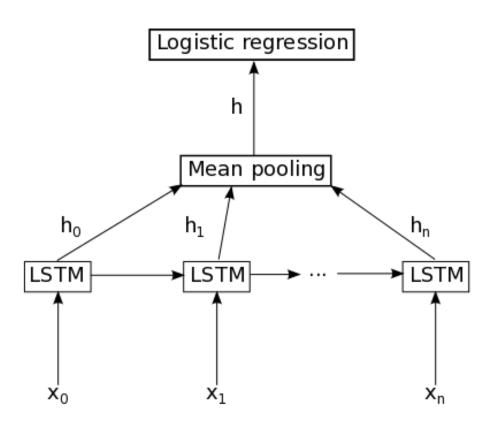


- ✓ Hidden = Cell
- √ Forget gate + input gate =1

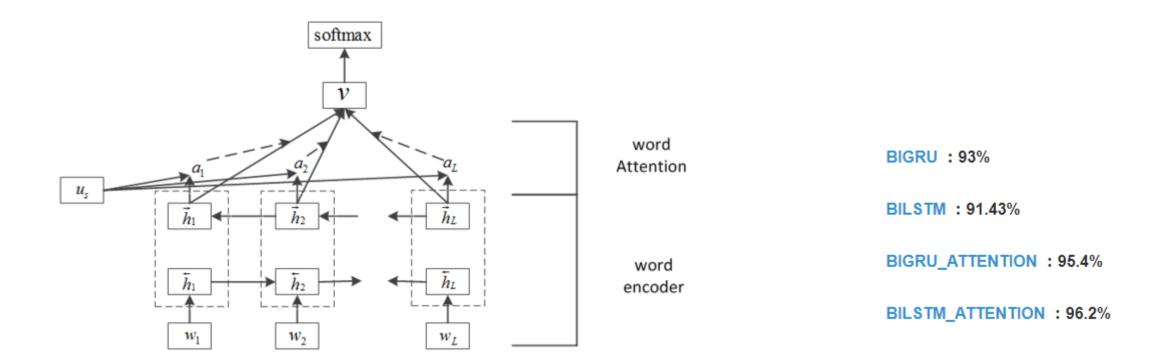
BiLSTM



Last or Mean?



RNN/LSTM with Attention



https://www.jianshu.com/p/4fbc4939509f

Visualization of Attention in RNN/LSTM

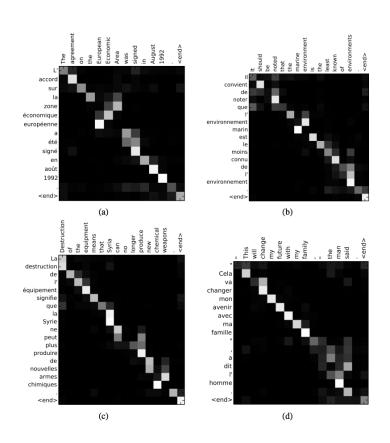


Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

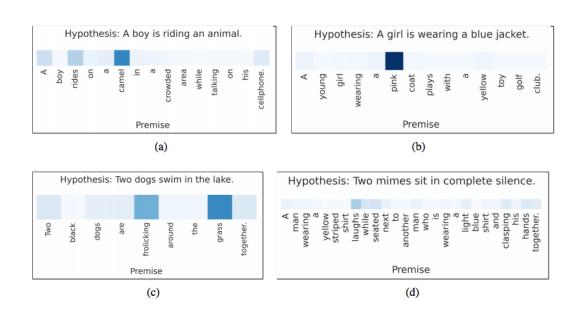
A woman is sitting at a table with a large pizza.

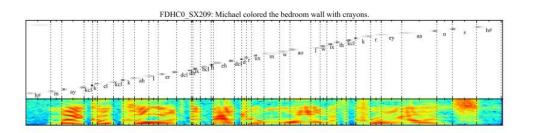
A man is talking on his cell phone while another man watches.

Machine Translation

Image Caption

Visualization of Attention in RNN/LSTM

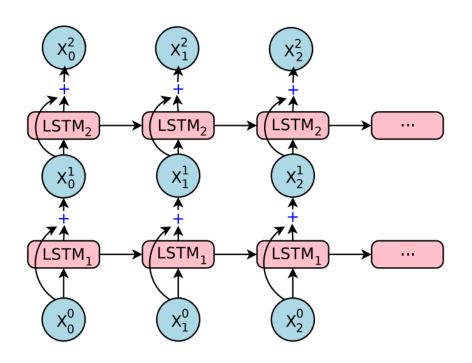




Sematic Entailment

Speech Recognition

Deeper LSTM



Background of Neural IR

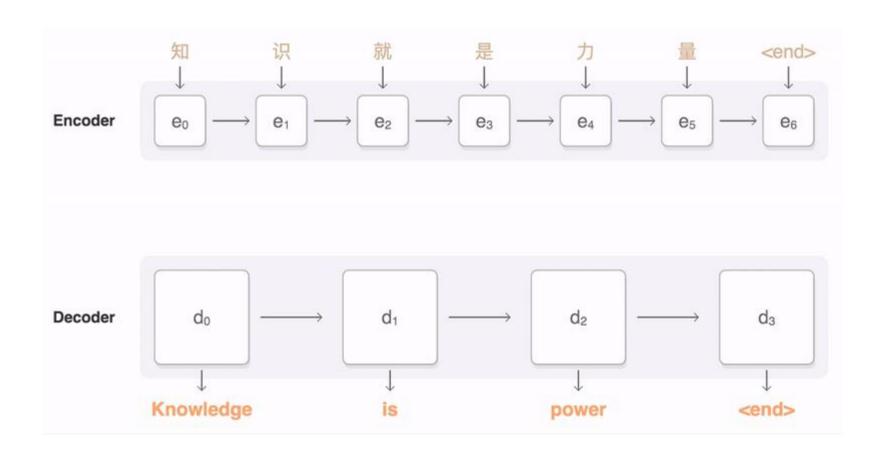
• Trends of DL for IR

Word embedding

Neural network

• DL for IR/NLP

Seq2seq



State-of-art DL models in NLP

- Reading comprehension
 - 536 wiki articles.
 - 10 questions asked by Human

The first recorded travels by Europeans to China and back date from this time. The most famous traveler of the period was the Venetian Marco Polo, whose account of his trip to "Cambaluc," the capital of the Great Khan, and of life there astounded the people of Europe. The account of his travels, Il milione (or, The Million, known in English as the Travels of Marco Polo), appeared about the year 1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of mentioning the Great Wall of China, tea houses, which would have been a prominent sight since Europeans had yet to adopt a tea culture, as well the practice of foot binding by the women in capital of the Great Khan. Some suggest that Marco Polo acquired much of his knowledge through contact with Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about China instead of by actually visiting it?

Answer: through contact with Persian traders

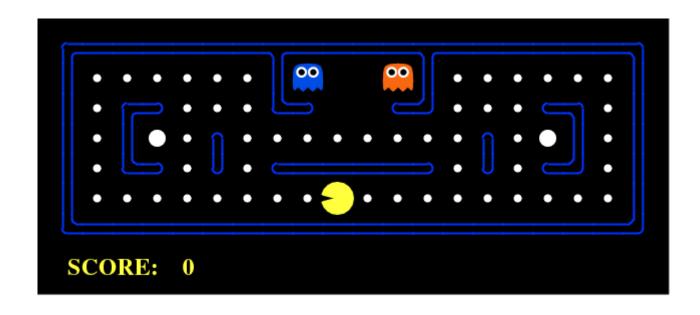
SQuAD1.1 Leaderboard

Since the release of SQuAD1.0, the community has made rapid progress, with the best models now rivaling human performance on the task. Here are the ExactMatch (EM) and F1 scores evaluated on the test set of v1.1.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Oct 05, 2018	BERT (single model) Google Al Language https://arxiv.org/abs/1810.04805	85.083	91.835
2 Sep 09, 2018	nlnet (ensemble) Microsoft Research Asia	85.356	91.202
2 Sep 26, 2018	nlnet (ensemble) Microsoft Research Asia	85.954	91.677
3 [Jul 11, 2018]	QANet (ensemble) Google Brain & CMU	84.454	90.490
4 [Jul 08, 2018]	r-net (ensemble) Microsoft Research Asia	84.003	90.147
5 [Mar 19, 2018]	QANet (ensemble) Google Brain & CMU	83.877	89.737
5 [Sep 09, 2018]	nlnet (single model) Microsoft Research Asia	83.468	90.133
5 Jun 20, 2018	MARS (ensemble) YUANFUDAO research NLP	83.982	89.796

https://rajpurkar.github.io/SQuAD-explorer/

Reinforced learning



Compared to the supervised learning:

You can not know the current reward from the current action, namely a delayed reward, only in the case that the game is finished.

GAN

