
IEEE TRANSACTIONS ON CYBERNETICS i

Leveraging Long and Short-term Information in
Content-aware Movie Recommendation via

Adversarial Training
Wei Zhao, Benyou Wang, Min Yang, Jianbo Ye, Zhou Zhao, Xiaojun Chen, Ying Shen

Abstract—Movie recommendation systems provide users with
ranked lists of movies based on individual’s preferences and
constraints. Two types of models are commonly used to generate
ranking results: long-term models and session-based models. The
long-term based models represent the interactions between users
and movies that are supposed to change slowly across time,
while the session-based models encode the information of users’
interests and changing dynamics of movies’ attributes in short
terms. In this paper, we propose an LSIC model, leveraging Long
and Short-term Information for Content-aware movie recommen-
dation using adversarial training. In the adversarial process, we
train a generator as an agent of reinforcement learning which
recommends the next movie to a user sequentially. We also
train a discriminator which attempts to distinguish the generated
list of movies from the real records. The poster information of
movies is integrated to further improve the performance of movie
recommendation, which is specifically essential when few ratings
are available. The experiments demonstrate that the proposed
model has robust superiority over competitors and achieves the
state-of-the-art results.

Index Terms—Top-n movie recommendation, adversarial
learning, content-aware recommendation

I. INTRODUCTION

W ITH the sheer volume of online information, much
attention has been given to data-driven recommender

systems. Those systems automatically guide users to discover
products or services respecting their personal interests from
a large pool of possible options. Numerous recommendation
techniques have been developed. Three main categories of
them are: collaborative filtering methods, content-based meth-
ods and hybrid methods [1], [2]. In this paper, we aim to
develop a method producing a ranked list of n movies to
a user at a given moment (top-N movie recommendation)
by exploiting both historical user-movie interactions and the
content information of movies.

∗ Min Yang is corresponding author.
† First two authors contribute to this work equally.
W. Zhao and M. Yang are with Shenzhen Institutes of Advanced Tech-

nology, Chinese Academy of Sciences, Shenzhen, China. E-mail:{min.yang,
wei.zhao}@siat.ac.cn.

B. Wang is with Department of Information Engineering, University of
Padova, Padova, Italy. E-mail: wang@dei.unipd.it.

J. Ye is with Department of computer science, Pennsylvania State Univer-
sity, PA, USA. E-mail: jianboye@gmail.com.

Z. Zhao is with School of Computer Science, Zhejiang University,
Hangzhou, China. E-mail: zhaozhou@zju.edu.cn.

X. Chen is with College of Computer Science and Software, Shenzhen
University, Shenzhen, China (e-mail: xjchen@szu.edu.cn).

Y. Shen is with School of Electronics and Computer Engineering, Peking
University Shenzhen Graduate School, Shenzhen, China (e-mail: sheny-
ing@pkusz.edu.cn).

Matrix factorization (MF) [3] is one of the most successful
techniques in the practice of recommendation due to its
simplicity, attractive accuracy and scalability. It has been
used in a broad range of applications such as recommending
movies, books, web pages, relevant research and services. The
matrix factorization technique is usually effective because it
discovers the latent features underpinning the multiplicative
interactions between users and movies. Specifically, it models
the user preference matrix approximately as a product of two
lower-rank latent feature matrices representing user profiles
and movie profiles respectively.

Despite the appeal of matrix factorization, this technique
does not explicitly consider the temporal variability of data [4].
Firstly, the popularity of a movie may change over time. For
example, movie popularity booms or fades, which can be
triggered by external events such as the appearance of an actor
in a new movie. Secondly, users may change their interests
and baseline ratings over time. This is well established by
previous work [5], [4]. A user might like a particular actor,
might discover the intricacies of a specific genre, or her
interest in a particular show might wane, due to maturity
or a change in lifestyle. For instance, a user who tended
to rate an average movie as “4 stars”, may now rate such
a movie as “3 stars”. Recently, recurrent neural network
(RNN) [6] has gained significant attention by considering such
temporal dynamics for both users and movies and achieved
high recommendation quality [7], [4]. The basic idea of these
RNN-based methods is to formulate the recommendation as a
sequence prediction problem. They take the latest observations
as input, update the internal states and make predictions based
on the newly updated states. As shown in [8], such prediction
based on short-term dependencies is likely to improve the
recommendation diversity.

More recent work [4] reveals that combing matrix factoriza-
tion based and RNN based recommendation approaches can
achieve good performance for the reasons that are complemen-
tary to each other. Specifically, the matrix factorization based
approaches make movie predictions based on users’ long-
term interests that change very slowly with respect to time.
On the contrary, the RNN based recommendation approaches
predict which movie will the user consume next, respecting
the dynamics of users’ behaviors and movies’ attributes in the
short term. It therefore motivates us to devise a joint approach
that takes advantage of both matrix factorization and RNN,
exploiting both long-term and short-term associations among
users and movies.

IEEE TRANSACTIONS ON CYBERNETICS ii

Furthermore, most existing recommender systems take into
account only the users’ past behaviors when making recom-
mendation. Compared with tens of thousands of movies in
the corpus, the historical rating set is too sparse to learn a
well-performed model. It is desirable to exploit the auxiliary
information of movies (e.g., posters, movie descriptions, user
reviews) for movie recommendation. For example, movie
posters reveal a great amount of information to understand
movies and users, as demonstrated in [9]. Such a poster is
usually the first contact that a user has with a movie, and
plays an essential role in the user’s decision to watch it or
not. When a user is watching the movie presented in cold,
blue and mysterious visual effects, he/she may be interested
in receiving recommendations for movies with similar styles,
rather than others that are with the same actors or subject [9].
These visual features of movies are usually captured by the
corresponding posters.

In this paper, we propose a novel LSIC model, which
leverages Long and Short-term Information in Content-aware
movie recommendation using adversarial training. The LSIC
model employs an adversarial framework to combine the MF
and RNN based models for the top-N movie recommendation,
taking the best of each to improve the final recommendation
performance. In the adversarial process, we simultaneously
train two models: a generative model G and a discriminative
model D. In particular, the generator G takes the user ui and
time t as input, and predicts the recommendation list for user
i at time t based on the historical user-movie interactions. We
implement the discriminator D with a siamese network that
incorporates long-term and session-based ranking model in a
pair-wise scenario. The two point-wise networks of siamese
network share the same set of parameters. The generator G and
the discriminator D are optimized with a minimax two-player
game. The discriminator D tries to distinguish the real high-
rated movies in the training data from the recommendation list
generated by the generator G, while the training procedure of
generator G is to maximize the probability of D making a
mistake. Thus, this adversarial process can eventually adjust G
to generate plausible and high-quality recommendation list. In
addition, we integrate poster information of movies to further
improve the performance of movie recommendation, which is
specifically essential when few ratings are available.

We summarize our main contributions as follows:
• To the best of our knowledge, we are the first to use GAN

framework to leverage the MF and RNN approaches
for top-N recommendation. This joint model adaptively
adjusts how the contributions of the long-term and short-
term information of users and movies are mixed together.

• We propose hard and soft mixture mechanisms to in-
tegrate MF and RNN. We use the hard mechanism to
calculate the mixing score straightforwardly and explore
several soft mechanisms to learn the temporal dynamics
with the help of the long-term profiles.

• Our model uses reinforcement learning to optimize the
generator G for generating highly rewarded recom-
mendation list. Thus, it effectively bypasses the non-
differentiable task metric issue by directly performing
policy gradient update.

• We explore the context-aware information (movie
posters) to alleviate the cold-start problem and further
improve the performance of movie recommendation. The
release of the collected posters would push forward
the research of integrating context-aware information in
movie recommender systems.

• To verify the effectiveness of our model, we conduct ex-
tensive experiments on two widely used real-life datasets:
Netflix Prize Contest data and MovieLens data. The
experimental results demonstrate that our model consis-
tently outperforms the state-of-the-art methods.

The rest of the paper is organized as follows. In Section
II, we review the related work on recommender systems.
Section III presents the proposed adversarial learning frame-
work for movie recommendation in detail. In Section IV,
we describe the experimental data, implementation details,
evaluation metrics and baseline methods. The experimental
results and analysis are provided in Section V. Section VI
concludes this paper.

II. RELATED WORK

Recommender system is an active research field [10], [11].
The authors of [1], [2] describe most of the existing techniques
for recommender systems. In this section, we briefly review
the following major approaches for recommender systems that
are related to our work.

a) Matrix factorization for recommendation: Modeling
the long-term interests of users, the matrix factorization
method and its variants have grown to become dominant in
the literature [12], [13], [3], [14], [15]. In the standard matrix
factorization, the recommendation task can be formulated as
inferring missing values of a partially observed user-item
matrix [3]. The Matrix Factorization techniques are effective
because they are designed to discover the latent features
underlying the interactions between users and items. [16] sug-
gested the Maximum Margin Matrix Factorization (MMMF),
which used low-norm instead of low-rank factorizations. [17]
presented the Probabilistic Matrix Factorization (PMF) model
that characterized the user preference matrix as a product of
two lower-rank user and item matrices. The PMF model was
especially effective at making better predictions for users with
few ratings. [15] proposed a new MF method which considers
the implicit feedback for on-line recommendation. In [15],
the weights of the missing data were assigned based on the
popularity of items. To exploit the content of items and solve
the data sparsity issue in recommender systems, [9] presented
a movie recommendation model which used additional visual
features (e.g.. posters and still frames) to further improve the
performance of movie recommendation.

b) Recurrent neural network for recommendation: These
traditional MF methods for recommendation systems are based
on the assumption that the user interests and movie attributes
are near static, which is however not consistent with reality.
[18] discussed the effect of temporal dynamics in recom-
mender systems and proposed a temporal extension of the
SVD++ (called TimeSVD++) to explicitly model the temporal
bias in data. However, the features used in TimeSVD++

IEEE TRANSACTIONS ON CYBERNETICS iii

were hand-crafted and computationally expensive to obtain.
Recently, there have been increasing interests in employing
recurrent neural network to model the temporal dynamics in
recommendation systems. For example, [19] applied recurrent
neural network (i.e. GRU) to session-based recommender
systems. This work treats the first item a user clicked as
the initial input of GRU. Each follow-up click of the user
would then trigger a recommendation depending on all of
the previous clicks. [20] proposed a recurrent neural network
to perform the time heterogeneous feedback recommendation.
[21] presented a visual and textural recurrent neural network
(VT-RNN), which simultaneously learned the sequential latent
vectors of user’s interest and captured the content-based rep-
resentations that contributed to address the cold-start problem.
[22] characterized the short- and long-term profile of many
collaborative filtering methods, and showed how RNNs can
be steered towards better short or long-term predictions. [4]
proposed a dynamic model, which incorporated the global
properties learned by MF into the recurrent neural network.
Different from their work, we use GAN framework to leverage
the MF and RNN approaches for top-N recommendation,
aiming to generate plausible and high-quality recommendation
lists.

c) Generative adversarial network for recommendation:
In parallel, previous work has demonstrated the effectiveness
of generative adversarial network (GAN) [23] in various tasks
such as image generation [24], [25], image captioning [26],
and sequence generation[27]. The most related work to ours is
[28], which proposed a novel IRGAN mechanism to iteratively
optimize a generative retrieval component and a discriminative
retrieval component. IRGAN reported impressive results on
the tasks of web search, item recommendation, and question
answering. Our approach differs from theirs in several aspects.
First, we combine the MF approach and the RNN approach
with GAN, exploiting the performance contributions of both
approaches. Second, IRGAN does not attempt to estimate the
future behavior since the experimental data is split randomly
in their setting. In fact, they use future trajectories to infer the
historical records, which seems not useful in real-life applica-
tions. Third, we incorporate poster information of movies to
deal with the cold-start issue and boost the recommendation
performance. To further improve the performance, we design
a siamese network to independently learn the representation
for each user and candidate item, and then maximize the
distance between the two estimated representations via a
margin constraint in pair-wise scenario.

III. OUR MODEL

Suppose there is a sparse user-movie rating matrix R that
consists of U users and M movies. Each entry rij,t denotes
the rating of user i on movie j at time step t. The rating is
represented by numerical values from 1 to 5, where the higher
value indicates the stronger preference. Instead of predicting
the rating of a specific user-movie pair as is done in [29], [30],
the proposed LSIC model aims to provide users with ranked
lists of movies (top-N recommendation) [31].

In this section, we elaborate each component of LSIC model
for content-aware movie recommendation. The main notations

TABLE I
NOTATION LIST. WE USE SUPERSCRIPT u TO ANNOTATE PARAMETERS

RELATED TO A USER, AND SUPERSCRIPT m TO ANNOTATE PARAMETERS
RELATED TO A MOVIE.

R the user-movie rating matrix
U , M the number of users and movies
rij rating score of user i on movie j
rij,t rating score of user i on movie j at time t
eui MF user factors for user i
emj MF movie factors for movie j
bui bias of user i in MF and RNN hybrid calculation
bmj bias of movie j in MF and RNN hybrid calculation
hui,t LSTM hidden-vector at time t for user i
hmj,t LSTM hidden-vector at time t for movie j
zui,t the rating vector of user i at time t (LSTM input)
zmj,t the rating vector of movie j at time t (LSTM input)
αit attention weight of user i at time t
βjt attention weight of movie j at time t
m+ index of a positive (high-rating) movie drawn from the

entire positive movie set M+

m− index of a negative (low-rating) movie randomly chosen
from the entire negative movie set M−

mg,t index of an item chosen by generator G at time t

of this work are summarized in Table I for clarity. The LSIC
model employs an adversarial framework to combine the MF
and RNN based models for the top-N movie recommendation.
The overview of our proposed architecture and its data-flow
are illustrated in Figure 1. In the adversarial process, we
simultaneously train two models: a generative model G and a
discriminative model D.

A. Matrix Factorization (MF)

The MF framework [17] models the long-term states (global
information) for both users (eu) and movies (em). In its
standard setting, the recommendation task can be formulated
as inferring missing values of a partially observed user-movie
rating matrix R. The formulation of MF is given by:

argmin
eu,em

∑
i,j

Iij
(
rij − ρ

(
(eui)

Temj
))2

+λu‖eu‖2F+λm‖em‖2F

(1)
where eui and emj represent the user and movie latent factors in
the shared d-dimension space respectively. rij denotes the user
i’s rating on movie j. Iij is an indicator function and equals
1 if rij > 0, and 0 otherwise. λu and λm are regularization
coefficients. The ρ(·) is a logistic scoring function that bounds
the range of outputs.

In most recommender systems, matrix factorization tech-
niques [3] recommend movies based on estimated ratings.
Even though the predicted ratings can be used to rank the
movies, it is known that it does not provide the best prediction
for the top-N recommendation since minimizing the objective
function – the squared errors – does not perfectly align with
the goal of optimizing the ranking order. A close prediction
on the rating score of one item cannot guarantee to recover
the relative preference relationship between two pairwised
items. [31] also shows that the models well designed for rating
prediction may lead to unsatisfactory performance on the task
of item ranking.

IEEE TRANSACTIONS ON CYBERNETICS iv

Discriminative Model D

Policy Gradient

Generative Model G

Recurrent Temporal User-State

Candidate Pool

Recurrent Temporal Item-State

RNN &MF Hybrid

Rating Score

User

Rating Score

CNN

m- /mg,t m+ from R

CNN

CNN EmbeddingEmbedding

RNN &MF Hybrid

Siamese Pairwise RankingModel

……

……

……

……

user i

movie j

user stationary
latent factor

movie stationary
latent factor

poster of mj
ℎ",$% ℎ",&% ℎ" ,'%

ℎ(,)* ℎ(,$* ℎ(,'*

𝑧(,)* 𝑧(,$* 𝑧(,'*

𝑧" ,$% 𝑧" ,&% 𝑧",'%

𝑒"%

𝑒(*𝑚(

𝑢"

Embedding

Fig. 1. The overall architecture of the proposed LSIC model, which leverages both RNN and MF models via an generative adversarial framework. LSIC
consists of a generative model G and a discriminative model D. In the adversarial process, we train the generative model G to predict the recommendation
list via the RNN and MF Hybrid model. We also train the discriminative model D to distinguish the generated recommendation list from the real ones in the
training data. The generative model and the discriminative model are optimized with a minimax two-player game. Here, m+ is a positive (high-rating) movie
chosen from the training data, m− is a negative movie randomly chosen from the entire negative (low-rating) movie space, mg,t is the generated movie by
G given time t. zui,t and zmj,t represent the rating vector of user i and movie j given time t. hui,t and hmj,t denote the hidden states of LSTM for user i and
movie j at time step t

In this paper, we have chosen a basic matrix factorisation
model for ranking prediction (top-N recommendation) directly,
and it would be straightforward to replace it with more
sophisticated models such as Probabilistic Matrix Factorization
(PMF) [17], whenever needed. For example, we may explore
more advanced MF based methods to alleviate the overfitting
problem when dealing with the severe sparse training data.

B. Recurrent Neural Network (RNN)

The RNN based recommender system focuses on modeling
session-based trajectories instead of global (long-term) infor-
mation [4]. It predicts future behaviors and provides users with
a ranking list given the users’ past history. The main purpose
of using RNN is to capture time-varying state for both users
and movies. Particularly, we use LSTM cell as the basic RNN
unit. Each LSTM unit at time t consists of a memory cell ct,
an input gate it, a forget gate ft, and an output gate ot. These
gates are computed from previous hidden state ht−1 and the
current input xt:

[ft, it, ot] = sigmoid(W [ht−1,xt]) (2)

The memory cell ct is updated by partially forgetting the
existing memory and adding a new memory content lt:

lt = tanh(V [ht−1,xt]) (3)
ct = ft � ct−1 + it � lt (4)

Once the memory content of the LSTM unit is updated, the
hidden state at time step t is given by:

ht = ot � tanh(ct) (5)

For simplicity of notation, the update of the hidden states of
LSTM at time step t is denoted as ht = LSTM(ht−1,xt).

Here, we use zui,t ∈ RU and zmj,t ∈ RM to represent the
rating vector of user i and movie j given time t respectively.
Both zui,t and zmj,t serve as the input to the LSTM layer at time
t to infer the new states of the user and the movie:

hui,t = LSTM(hui,t−1, z
u
i,t) (6)

hmj,t = LSTM(hmj,t−1, z
m
j,t) (7)

where hui,t and hmj,t denote the hidden states of LSTM for user
i and movie j at time step t respectively.

CNN Encoder for Poster Information In this work, we
explore the potential of integrating posters of movies to boost
the performance of movie recommendation. Inspired by the
recent advances of deep convolutional neural networks in
computer vision [32], [33], the poster is mapped to the same
space of the movie by using a deep residual network [34].
Deep Residual Network (ResNet) makes it possible to train
up to hundreds or even thousands of layers and achieves the
state-of-the-art performance in many tasks of computer vision
community. ResNet uses an end-to-end strategy to naturally
integrate the multi-layer features. These feature annotations are
greatly enriched with the stacked layers. Rather than expecting
every few stacked layers fit an underlying mapping directly,
the residual network makes these staked layers fit a residual
mapping. More concretely, we encode each image into a FC-
2k feature vector with Resnet-101 (101 layers) [34], resulting
in a 2048-dimensional vector representation. The poster Pj of
movie j is only inputted once, at t = 0, to inform the movie
LSTM about the poster content:

IEEE TRANSACTIONS ON CYBERNETICS v

zmj,0 = CNN(Pj). (8)

C. RNN and MF Hybrid

Although the user and movie states are time-varying, there
are also some stationary components that capture the fixed
properties, e.g., the profile of a user and the genre of a movie
[4]. To leverage both the long- and short-term information of
users and movies, we supplement the dynamic user and movie
representations hui,t and hmj,t with the stationary ones eui and
emj , respectively. Similar to [4], the rating prediction function
is defined as:

rij,t = g(eui , e
m
j ,h

u
i,t,h

m
j,t) (9)

where g(.) is a score function, eui and emj denote the global
latent factors of user i and movie j learned by Eq. (1); hui,t
and hmj,t denote the hidden states at time step t of two RNNs
learned by Eq. (6) and Eq. (7) respectively. In this work,
we study four strategies to calculate the score function g,
integrating MF and RNN. The details are described below.

a) LSIC-V1: The first strategy simply combines the
results from MF and RNN linearly, inspired by [4]. However,
the scores from MF and RNN are calculated independently
and there is no interaction between their calculations. Math-
ematically, the combination of MF and RNN is defined as
follows:

rij,t = g(eui , e
m
j ,h

u
i,t,h

m
j,t) =

1

1 + exp(−s)
(10)

s = eui · emj + hui,t · hmj,t + bui + bmj (11)

where bui and bmj are the biases of user i and movie j; hui,t
and hmj,t are computed by Eq. (6) and Eq. (7).

In fact, LSIC-V1 does not exploit the global factors in
learning the temporal dynamics. In this paper, we also design
three soft mixture mechanisms and provide three strategies to
account for the global factors eui and emj in learning hui,t and
hmj,t, as described below (i.e., LSIC-V2, LSIC-V3 and LSIC-
V4).

b) LSIC-V2: LSIC-V1 is not stable when the hidden
state of RNN is initialized randomly [35]. Motivated by this
observation, we propose LSIC-V2 which uses user and item
representations learned by MF to initialize the hidden neurons
of RNN. In particular, we use the latent factors of user i (eui)
and movie j (emj) pre-trained by MF model to initialize the
hidden states of the LSTM cells hui,0 and hmj,0 respectively, as
depicted in Figure 3(b).

c) LSIC-V3: Since the RNN has position bias to the
input and ignores the global (long-term) information, we use
the user and item representations learned by MF as the extra
input of the RNN. As shown in Figure 3(c), we extend LSIC-
V2 by treating eui (for user i) and emj (for movie j) as the
static context vectors, and feed them as an extra input into the
computation of the temporal hidden states of users and movies
by LSTM. At each time step, the context information assists
the inference of the hidden states of LSTM model.

d) LSIC-V4: The last strategy is inspired by the recent
success of attention mechanism in natural language processing
and computer vision [36], [37]. A user/item profile not only
depends on itself, but also is affected by its neighbors. Thus,
we design an attention mechanism to make use of the dynamic
item and user representations learned by RNN to learn a
weight for each user representation and item representation of
MF. The mixing score function at time t can be reformulated
by:

rij,t = g(eui , e
m
j ,h

u
i,t−1,h

m
j,t−1, c

u
i,t, c

m
j,t) =

1

1 + exp(−s)
(12)

s = eui · emj + hui,t · hmj,t + bi + bj (13)

where cui,t and cmj,t are the context vectors at time step t for
user i and movie j; bi and bj are bias terms for user i and
movie j, respectively; hui,t and hmj,t are the hidden states of
LSTMs at time step t, computed by

hui,t = LSTM(hui,t−1, z
u
i,t, c

u
i,t) (14)

hmj,t = LSTM(hmj,t−1, z
m
j,t, c

m
j,t) (15)

The context vectors cui,t and cmj,t act as extra input in the
computation of the hidden states in LSTMs to make sure that
every time step of the LSTMs can get full information of the
context (long-term information). The context vectors cui,t and
cmj,t are the dynamic representations of the relevant long-term
information for user i and movie j at time t, calculated by

cui,t =

U∑
k=1

αik,te
u
k ; cmj,t =

M∑
p=1

βjp,te
m
p (16)

where U and M are the number of users and movies. The
attention weights αik,t and βjp,t for user i and movie j at time
step t are computed by

αik,t =
exp(σ(hui,t−1, e

u
k))∑U

k′=1 exp(σ(h
u
i,t−1, e

u
k′))

(17)

βjp,t =
exp(σ(hmj,t−1, e

m
p))∑M

p′=1 exp(σ(h
m
j,t−1, e

m
p′))

(18)

where σ is a feed-forward neural network to produce a
real-valued score. The attention weights αit and βjt together
determine which user and movie factors should be selected to
generate rij,t.

D. Generative Adversarial Network for Recommendation
Generative adversarial network (GAN) [23] consists of a

generator G and a discriminator D that compete in a minimax
game with two players: the discriminator tries to distinguish
real high-rated movies on training data from ranking or
recommendation list predicted by G, and the generator tries
to fool the discriminator and generate (predict) well-ranked
recommendation list. Concretely, D and G play the following
game on V(D,G):

min
G

max
D

v(D,G) =Ex∼Ptrue(x)[logD(x)]+

Eznoise∼P (znoise)[log(1−D(G(znoise)))]
(19)

IEEE TRANSACTIONS ON CYBERNETICS vi

Global User Factors

Global Movie Factors

,0
u
ih ,1

u
ih ,

u
i th

,0
m
jh ,1

m
jh ,

m
j th

,ij tr

u
ie

m
je

(a) LSIC-V1: Hard mechanism

Global User Factors

Global Movie Factors

u
ie

m
je

,ij tr
,0
u
ih ,1

u
ih ,

u
i th

,0
m
jh ,1

m
jh ,

m
j th

(b) LSIC-V2: Prior initialization

Global User Factors

Global Movie Factors

u
ie

m
je

,0
u
ih ,1

u
ih ,

u
i th

,0
m
jh ,1

m
jh ,

m
j th

,ij tr

(c) LSIC-V3: Static context

Movie Attention

Global User Factors

Global Movie Factors

User Attention

u
ie

m
je

,ij tr

u
ie

m
je

,0
u
ih ,1

u
ih ,

u
i th

,0
m
jh ,1

m
jh ,

m
j th

,0
u
ic ,1

u
ic ,

u
i tc

,
m
j tc,1

m
jc,0

m
jc

(d) LSIC-V4: Attention model
Fig. 2. Four strategies to calculate the score function g, integrating MF and RNN.

Here, x is the input data from training set, znoise is the noise
variable sampled from normal distribution.

We propose an adversarial framework to iteratively optimize
two models: the generative model G predicting recommen-
dation list given historical user-movie interactions and the
discriminative model D predicting the relevance of the gen-
erated list. Like the standard generative adversarial networks
(GANs) [23], LSIC also optimizes the two models with a
minimax two-player game. D tries to distinguish the real high-
rated movies in the training data from the recommendation
list generated by G, while G maximizes the probability of
D making a mistake. Hopefully, this adversarial process can
eventually adjust G to generate plausible and high-quality
recommendation list. We further elaborate the generator and
discriminator below.

1) Discriminative Model: As depicted in Figure 1 (right
side), we implement the discriminator D via a Siamese
Network that incorporates long and session-based ranking
models in a pair-wise scenario. The discriminator D has two
symmetrical point-wise networks that share parameters and are
updated by minimizing a pair-wise loss.

The objective of discriminator D is to maximize the prob-
ability of correctly distinguishing the ground truth movies
from generated recommendation movies. For G fixed, we can
obtain the optimal parameters for the discriminator D with the
following formulation.

θ∗ = argmax
θ

∑
i∈U

(
Em+,m−∼ptrue [logDθ(ui,m−,m+|t)] +

Em+∼ptrue,mg,t∼Gφ(mg,t|ui,t) [log(1−Dθ(ui,mg,t,m+|t)]
)

(20)
where U denotes the user set, ui denotes user i, m+ is a
positive (high-rating) movie, m− is a negative movie randomly
chosen from the entire negative (low-rating) movie space, θ
and φ are parameters of D and G, and mg,t is the generated
movie by G given time t. Here, we adopt hinge loss as our
training objective since it performs better than other training
objectives. Hinge loss is widely adopted in various learning
to rank scenario, which aims to penalize the examples that

violate the margin constraint:

D(ui,m−,m+|t) = max
{
0, ε− g(eui , emm+

,hui,t,h
m
m+,t)

+g(eui , e
m
m− ,h

u
i,t,h

m
m−,t)

}
(21)

where ε is the hyper-parameter determining the margin of
hinge loss, and we compress the outputs to the range of (0, 1).

2) Generative Model: Similar to conditional GANs pro-
posed in [38], our generator G takes in the auxiliary informa-
tion (user ui and time t) as input, and generates the ranking
list for user i. Specifically, when D is optimized and fixed
after computing Eq. 20, the generator G can be optimized by
minimizing the following formulation:

φ∗ = argmin
φ

∑
m∈M

(
Emg,t∼Gφ(mg,t|ui,t)[

log(1−D(ui,mg,t,m+|t)]
) (22)

Here, M denotes the movie set. As in [23], instead of mini-
mizing log(1 − D(ui,mg,t,m+|t)), we train G to maximize
log(D(ui,mg,t,m+|t)).

3) Policy Gradient: Since the sampling of recommendation
list by generator G is discrete, it cannot be directly optimized
by gradient descent as in the standard GAN formulation.
Therefore, we use policy gradient based reinforcement learn-
ing algorithm [39] to optimize the generator G so as to
generate highly rewarded recommendation list. Concretely, we
have the following derivations:

∇φJG(ui) = ∇φEmg,t∼Gφ(mg,t|ui,t)[logD(ui,mg,t,m+|t)]

=
∑
m∈M

∇φGφ(m|ui, t) logD(ui,m,m+|t)

=
∑
m∈M

Gφ(m|ui, t)∇φ logGφ(m|ui, t)·

logD(ui,m,m+|t)
=Emg,t∼Gφ(m|ui,t)[∇φlogGφ(mg,t|ui, t)·

logD(ui,mg,t,m+|t)]

≈ 1

K

K∑
k=1

∇φlogGφ(mk|ui, t) logD(ui,mk,m+|t)

(23)
where K is number of movies sampled by the current
version of generator and mk is the k-th sampled item.

IEEE TRANSACTIONS ON CYBERNETICS vii

With reinforcement learning terminology, we treat the term
logD(ui,mk,m+|t) as the reward at time step t, and take an
action mk at each time step. To accelerate the convergence,
the rewards within a batch are normalized with a Gaussian
distribution to make the differences significant.

Algorithm 1: Long and Session-based Ranking Model
with Adversarial Network

1 Input: generator Gφ, discriminator Dθ, training data
S.

2 Initialize models Gφ and Dθ with random weights,
and pre-train them on training data S.

3 repeat
4 for g-steps do
5 Generate recommendation list for user i at time t

using the generator Gφ.
6 Sample K candidates from recommendation list.
7 for k ∈ {1, ...,K} do
8 Sample a positive movie m+ from S.
9 Compute the reward logD(ui,mk,m+|t) with

Eq.(21)
10 Update generator Gφ via policy gradient Eq.(23).

11 for d-steps do
12 Use current Gφ to generate a negative movie and

combined with a positive movie sampled from S.
13 Update discriminator Dθ with Eq.(20).

14 until convergence

The overall procedure is summarized in Algorithm 1. Dur-
ing the training stage, the discriminator and the generator are
trained alternatively in a adversarial manner via Eq.(20) and
Eq.(23), respectively.

IV. EXPERIMENTAL SETUP

A. Datasets

TABLE II
CHARACTERISTICS OF THE DATASETS.

Dataset MovieLens-100K Netflix-3M Netflix-Full

Users 943 326,668 480,189
movies 1,6831 17,751 17,770
Ratings 100,000 16,080,980 100,480,507
Rating Range 1-5 1-5 1-5

Train Data 09/97-03/98 9/05-11/05 12/99-11/05
Test Data 03/98-04/98 12/05 12/05
Train Ratings 77,714 13,675,402 98,074,901
Test Ratings 21,875 2,405,578 2,405,578

Density 0.493 0.406 0.093
Sparsity 0.063 0.003 0.012

In order to evaluate the effectiveness of our model, we
conduct experiments on two widely-used real-life datasets:
MovieLens100K and Netflix (called “Netflix-Full”). To evalu-
ate the robustness of our model, we also conduct experiments
on a 3-month Netflix (called “Netflix-3M”) dataset, which is

a small version of Netflix-Full and has different training and
testing period. Each movie in both MovieLens and Netflix
datasets has a rating from the customers, and the rating is on
a five-star scale from 1 to 5. In addition, the movie files that
include the years of release and the titles of the movies are also
provided. Each user in MovieLens dataset has the demographic
information, such as age, gender, occupation, etc.

For each dataset, we split the whole data into several
training and testing intervals based on time, as is done in [4],
to simulate the actual situation of predicting future behaviors
of users given the data that occurred strictly before current
time step. Then, each testing interval is randomly divided into
a validation set and a testing set. We removed the users and
movies that do not appear in training set from the validation
and test sets. The detailed statistics are presented in Table II1.
Following [28], we treat “5-star” in Netflix, “4-star” and “5-
star” for MovieLens100K as positive feedback and all others
as unknown (negative) feedback.

B. Implementation Details

There are several critical hyperparameters needed to be set
for our proposed mdoel.

a) Matrix Factorization: 5-dimensional and 16 dimen-
sional stationary latent factors are used for MovieLens and
Netflix, respectively, as suggested in [28]. The item and user
latent feature matrix is randomly initialized by a uniform
distribution ranged in [-0.05, 0.05]. We take gradient-clipping
to suppress the gradient to the range of [-0.2,0.2]. L2 regu-
larization (with λu = λm = 0.05) is used to the weights and
biases of user and movie factors. The function ρ is a logistic
scoring function that bounds the range of the outputs.

b) Convolutional Neural Network: We follow the same
parameter settings as in [34] for the implementation of ResNet.
We adopt batch normalization (BN) right after each convolu-
tion and before activation. We initialize the weights and train
all plain/residual nets from scratch. We do not use dropout for
ResNet, following the practice in [34].

c) Recurrent Neural Network: We use a single-layer
LSTM with 10 hidden neurons in our experiments. The size
of the input embeddings is set to 15. We adopt 4-dimensional
dynamic states where each state contains 7-days users/movies
behavioral trajectories. That is, we take one month as the
length of a session. The weight parameters are randomly
sampled from the uniform distribution U(−0.01, 0.01), and
the bias parameters are set to zero. L2 regularization (with a
weight decay value of 0.001) and dropout (with a dropout rate
of 0.2) are used to avoid overfitting. We conduct mini-batch
training (batch size = 128) using SGD optimization method to
train the model which follows the suggested parameter setup
in [28].

d) Generative Adversarial Nets: We pre-train G and
D on the training data with a pair-wise scenario, and use
SGD algorithm with learning rate 1 × 10−4 to optimize its
parameters. This step aims at improving the recommendation
performance of the generator G, based on the pretrained

1“Density” shows the average number of 5-ratings for the user per day.
“Sparsity” shows the filling-rate of user-movie rating matrix as used in [4]

IEEE TRANSACTIONS ON CYBERNETICS viii

discriminator D. The number of sampled movies is set to
64 (i.e., K = 64). In addition, we use matrix factorization
model to generate 100 candidate movies, and then re-rank
these movies with LSTM. In all experiments, we conduct
mini-batch training with batch size 128.

C. Evaluation Metrics
To quantitatively evaluate our method, we adopt the standard

rank-based evaluation metrics to measure the performance of
top-N recommendation [31], [40] , including Precision@N,
Normalised Discounted Cumulative Gain (NDCG@N), Mean
Average Precision (MAP) and Mean Reciprocal Ranking
(MRR). The larger the values of these evaluation metrics are,
the better the performance of the recommender system is.

The precision of recommendation describes the proportion
of items that users prefer, which is defined as:

Precision@n =
Nrs@n

n
(24)

where Nrs is the number of the recommended items that user
prefer, and n is the first n recommended items.

The normalized discounted cumulative gain (nDCG) has
been widely used to evaluate the ranked lists of the top-N
recommendation systems. The premise of nDCG is that the
highly relevant movies appearing lower in a list should be
penalized as the graded relevance value is reduced logarith-
mically proportional to the position of the result. Formally,
nDCG is defined as:

nDCG@N =
DCG@N

IDCG@N
(25)

DCG@N = rel1 +

N∑
i=2

rel(i)

log2 i
(26)

where N denotes the position up to which relevance is
accumulated (the size of each recommendation list), rel(i)
is an indicator function equaling 1 if the item at rank i is
a relevant movie, zero otherwise. IDCG represents a perfect
(ideal) ranking of discounted cumulative gain.

The mean average precision (MAP) is the average of
different recommendation precisions. The formula of MAP is
defined as:

MAP@N =

∑Q
q=1AP@N(q)

Q
(27)

AP@N =

∑N
k=1 Precision@k × rel(k)

of relevant movies
(28)

where Q is the number of recommendation, rel(k) is an
indicator function equaling 1 if the item at rank k is a relevant
movie, zero otherwise.

The mean reciprocal rank (MRR) can measure whether the
recommender system places the user’s favorite items in the
front. The MRR is defined as follows:

MRR =

∑Q
q=1 1/rankq

Q
(29)

where Q is the number of recommendation, rankq represents
the rank position of the first relevant document for the q-th
recommendation.

D. Comparison to Baselines

In the experiments, we evaluate and compare our models
with several state-of-the-art methods.

a) Bayesian Personalised Ranking (BPR): Given a posi-
tive movie, BPR uniformly samples negative movies to resolve
the imbalance issue and provides a basic baseline for top-N
recommendation [43].

b) Pairwise Ranking Factorization Machine (PRFM):
This is one of the state-of-the-art movie recommendation
algorithms, which applies Factorization Machine model to
microblog ranking on basis of pairwise classification [44]. We
use the same settings as in [44] in our experiments.

c) LambdaFM: It is a strong baseline for recommenda-
tion, which directly optimizes the rank biased metrics [42]. We
run the LambdaFM model with the publicly available code2,
and use default settings for all hyperparameters.

d) Recurrent Recommender Networks (RRN): This
model supplements matrix factorization with recurrent neural
network model via a hard mixture mechanism [4]. We use the
same setting as in [4].

e) IRGAN: This model trains the generator and discrim-
inator alternatively with MF in an adversarial process [28].
We run the IRGAN model with the publicly available code3,
and use default settings for all hyperparameters.

f) CTR: Collaborative Topic Regression is a state-of-
the-art recommendation model, which combines collaborative
filtering (PMF) and topic modeling (LDA) to use both ratings
and documents [45].

g) CDL: Collaborative Deep Learning is another state-
of-the-art recommendation model, which enhances rating pre-
diction accuracy by analyzing documents using Stacked De-
noising AutoEncoder (SDAE) [46].

h) ConvMF: Convolutional MF (ConvMF) is a strong
baseline that integrates convolutional neural network into
probabilistic matrix factorization [41].

Overall, BPR, PRFM, LambdaFM, RRN, and IRGAN are
reommender systems that leverage merely the rating informa-
tion, while CTR, CDL and SDAE incorporate both rating and
context information for item recommendation. Some important
hyperparameters of each models are listed in Table III.

V. EXPERIMENTAL RESULTS

In this section, we compare our model with baseline meth-
ods quantitatively and qualitatively.

A. Quantitative Evaluation

We first evaluate the performance of top-N recommendation.
The experimental results are summarized in Tables IV ,V
and VI. Our model substantially and consistently outperforms
the baseline methods by a noticeable margin on all the
experimental datasets. In particular, we have explored several
versions of our model with different mixture mechanisms. As
one anticipates, LSIC-V4 achieves the best results across all

2https://github.com/fajieyuan/LambdaFM
3https://github.com/geek-ai/irgan

IEEE TRANSACTIONS ON CYBERNETICS ix

TABLE III
THE KEY FEATURES AND HYPERPARAMETERS FOR THE STATE-OF-THE-ART BASELINE METHODS.

Baselines Key features Key hyperparameters
BPR Rating matrix The number of features k is set to 10. We randomly initialize to a small value the item and user feature

matrix. The regularization terms for user and item are set to 0.025.
PRFM Rating matrix We use LIBPMF to implement this model. Grid search of regularization parameter over λ ∈

{100, 10−1, . . . , 10−5} and factor size over k ∈ {20, 40, 80, 160} is performed to choose the best
parameters.

LambdaFM Rating matrix We run LambdaFM with γπ , γε ∈ {0.5, 0.1, 0.05, 0.01, 0.005} to find the best regularization parameters.
We tune the value of ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.8, 1.0}. The value of parameter ε is fixed at 1.

RRN Rating matrix The number of hidden states of LSTM is 15 for Netflix (including Netflix-3M and Netflix-full) and
10 for Movielens. 15-dimensional input embeddings and 4-dimensional dynamic states are used. Each
dynamic state contains 7-days users/movies behavioral trajectories. For MF, we use 5-dimensional and
20-dimensional stationary latent factors for MovieLens and Netflix, respectively. ADAM optimizer is
adopted and the learning rate is 1× 10−4.

IRGAN Rating matrix The factor numbers for matrix factorization are 5 and 16 for MovieLens and Netflix respectively. The
number of hidden neurons of LSTM is 10. 15-dimensional input embeddings and 4 dimensional dynamic
states. L2 regularization (with λ = 0.05) is used to weights and biases of the LSTM layer to avoid
overfitting. SGD with learning rate 1× 10−4 is used to optimize the parameters of the model.

CTR Rating matrix and
Item text description

We use grid search to find that K = 50, λu = 0.01, λv = 10, a = 1, b = 0.01 achieves good
performance on the held out recommendations.

CDL Rating matrix and
Item text description

We directly set a = 1, b = 0.01,K = 50 and perform grid search on the hyperparameters
λu, λv , λn, λw ∈ {0.01, 0.1, 1.0, 10, 100}. We use a masking noise with a noise level of 0.3 to get the
corrupted input and choose a dropout rate from {2, 33, 11} of 0.1 to achieve adaptive regularization.
The 2-layer CDL model is adopted.

ConvMF Rating matrix and
Item text description

The maximum length of documents is set to 300. As in [41], we initialize the word latent vectors randomly
with dimension size of 200, which are tuned through the training phase. The dropout is used to prevent
overfitting and we set the dropout rate to 0.2. Mini-batch based RMSprop (with batch size 128) is used
to optimize the model.

TABLE IV
MOIVE RECOMMENDATION RESULTS (MOVIELENS).

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MRR MAP

BPR 0.2795 0.2664 0.2301 0.2910 0.2761 0.2550 0.4324 0.3549
PRFM 0.2884 0.2699 0.2481 0.2937 0.2894 0.2676 0.4484 0.3885
LambdaFM 0.3108 0.2953 0.2612 0.3302 0.3117 0.2795 0.4611 0.4014
RRN 0.2893 0.2740 0.2480 0.2951 0.2814 0.2513 0.4320 0.3631
IRGAN 0.3022 0.2885 0.2582 0.3285 0.3032 0.2678 0.4515 0.3744

CTR 0.2824 0.2694 0.2493 0.2855 0.2836 0.2569 0.4505 0.3725
CDL 0.2875 0.2731 0.2504 0.2946 0.2865 0.2673 0.4491 0.3863
ConvMF 0.2901 0.2856 0.2545 0.2978 0.2914 0.2733 0.4592 0.3996

LSIC-V1 0.2946 0.2713 0.2531 0.2905 0.2801 0.2644 0.4595 0.4066
LSIC-V2 0.3004 0.2843 0.2567 0.3122 0.2951 0.2814 0.4624 0.4101
LSIC-V3 0.3105 0.3023 0.2610 0.3217 0.3086 0.2912 0.4732 0.4163
LSIC-V4 0.3327 0.3173 0.2847 0.3512 0.3331 0.2939 0.4832 0.4321

evaluation metrics and all datasets. For example, on Movie-
Lens dataset, LSIC-V4 improves 7.45% on percision@5 and
6.87% on NDCG@5 over the baseline methods. The main
strength of our model comes from its capability of prioritizing
both long-term and short-term information in content-aware
movie recommendation. In addition, our mixture mechanisms
(hard and soft) also seem quite effective to integrate MF and
RNN.

To better understand the adversarial training process, we
visualize the learning curves of LSIC-V4 as shown in Figure
3. Due to the limited space, we only report the Precision@5
and NDCG@5 scores as in [28]. The other metrics exhibit a
similar trend. As shown in Figure 3, after about 50 epoches,
both Precision@5 and NDCG@5 converge and the winner is
the generator which is used to generate recommendation list

for our final top-N movie recommendation. The performance
of generator G becomes better with the effective feedback
(reward) from discriminator D. On the other hand, once we
have a set of high-quality recommendation movies, the perfor-
mance of D deteriorates gradually in the training procedure
and makes mistakes for predictions. In our experiments, we
use the generator G with best performance to predict test data.

B. Ablation Study

In order to analyze the effectiveness of different components
of our model for top-N movie recommendation, in this section,
we report the ablation test of LSIC-V4 by discarding poster
information (w/o poster) and replacing the reinforcement
learning with Gumbel-Softmax [47] (w/o RL), respectively.

IEEE TRANSACTIONS ON CYBERNETICS x

TABLE V
MOVIE RECOMMENDATION RESULTS (NETFLIX-3M).

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MRR MAP

BPR 0.2670 0.2548 0.2403 0.2653 0.2576 0.2469 0.3829 0.3484
PRFM 0.2562 0.2645 0.2661 0.2499 0.2575 0.2614 0.4022 0.3712
LambdaFM 0.3082 0.2984 0.2812 0.3011 0.2993 0.2849 0.4316 0.4043
RRN 0.2759 0.2741 0.2693 0.2685 0.2692 0.2676 0.3960 0.3831
IRGAN 0.2856 0.2836 0.2715 0.2824 0.2813 0.2695 0.4060 0.3718

CTR 0.2564 0.2578 0.2605 0.2543 0.2622 0.2535 0.3244 0.3521
CDL 0.2703 0.2704 0.2646 0.2741 0.2733 0.2597 0.3765 0.3843
ConvMF 0.2841 0.2793 0.2694 0.2775 0.2790 0.2633 0.3968 0.3805

LSIC-V1 0.2815 0.2801 0.2680 0.2833 0.2742 0.2696 0.4416 0.4025
LSIC-V2 0.2901 0.2883 0.2701 0.2903 0.2831 0.2759 0.4406 0.4102
LSIC-V3 0.3152 0.3013 0.2722 0.2927 0.2901 0.2821 0.4482 0.4185
LSIC-V4 0.3221 0.3193 0.2921 0.3157 0.3114 0.2975 0.4501 0.4247

TABLE VI
MOVIE RECOMMENDATION RESULTS (NETFLIX-FULL).

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MRR MAP

BPR 0.3011 0.2817 0.2587 0.2998 0.2870 0.2693 0.3840 0.3660
PRFM 0.2959 0.2837 0.2624 0.2831 0.2887 0.2789 0.4060 0.3916
LambdaFM 0.3446 0.3301 0.3226 0.3450 0.3398 0.3255 0.4356 0.4067
RRN 0.3135 0.2954 0.2699 0.3123 0.3004 0.2810 0.3953 0.3768
IRGAN 0.3320 0.3229 0.3056 0.3319 0.3260 0.3131 0.4248 0.4052

CTR 0.2857 0.2939 0.2765 0.3001 0.3156 0.2886 0. 3736 0.3925
CDL 0.3045 0.3076 0.2844 0.3042 0.3244 0.2933 0.4195 0.4041
ConvMF 0.3257 0.3293 0.2946 0.3155 0.3396 0.2974 0.4302 0.4166

LSIC-V1 0.3127 0.3012 0.2818 0.3247 0.3098 0.2957 0.4470 0.4098
LSIC-V2 0.3393 0.3271 0.3172 0.3482 0.3401 0.3293 0.4448 0.4213
LSIC-V3 0.3501 0.3480 0.3291 0.3498 0.3451 0.3321 0.4503 0.4257
LSIC-V4 0.3621 0.3530 0.3341 0.3608 0.3511 0.3412 0.4587 0.4327

TABLE VII
ABLATION RESULTS FOR NETFLIX-3M DATASET.

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MRR MAP

LSIC-V4 0.3221 0.3193 0.2921 0.3157 0.3114 0.2975 0.4501 0.4247
w/o RL 0.3012 0.2970 0.2782 0.2988 0.2927 0.2728 0.4431 0.4112
w/o poster 0.3110 0.3012 0.2894 0.3015 0.3085 0.2817 0.4373 0.4005

Gumbel-Softmax is an alternative method to address the non-
differentiation problem so that G can be trained straightfor-
wardly.

Due to the limited space, we only illustrate the experimental
results for Netflix-3M dataset that is widely used in movie
recommendation (see Table VII). Generally, both factors con-
tribute, and reinforcement learning contributes most. This is
within our expectation since discarding reinforcement learning
will lead the adversarial learning inefficient. With Gumbel-
Softmax, G does not benefit from the reward of D, so that
we do not know which movies sampled by G are good and
should be reproduced. Not surprisingly, poster information
also contributes to movie recommendation.

C. Computational Cost

We investigate the computational cost of baseline methods
and the proposed LSIC model. All these methods are run on a
single NVIDIA GeForce GTX 1080 Ti. The GAN framework
is indeed computationally expensive, thus LSIC and IRGAN
have longer training time than other methods. Specifically, the
training time of each epoch on Netflix-3M dataset is about 2
hours for LSIC and half a hour for IRGAN. On the other hand,
the RNN component is also computationally expensive, which
is caused by the complex operations in each RNN unit along
the input sequence. Therefore, the MF based methods (e.g.,
BPR, PRFM, LambdaFM) are faster than RNN [4] because
they do not need recurrent calculators of input sequence length.
In particular, RNN method takes about 50 minutes per epoch,
while the MF based models take only about 10 minutes per

IEEE TRANSACTIONS ON CYBERNETICS xi

TABLE VIII
THE RECALLED MOVIES FROM TOP-10 CANDIDATES IN NEFLIX-3M DATASET

Groundtruth IRGAN [28] RRN [4] LambdaFM [42] LSIC-V4

Userid: 1382

9 Souls
The Princess Bride
Stuart Saves His Family
The Last Valley
Wax Mask
After Hours
Session 9
Valentin

[1] The Beatles: Love Me Do
[2] Wax Mask X
[3] Stuart Saves His Family X

[4] After Hours X
[5] Top Secret!

[6] Damn Yankees
[7] Dragon Tales: It’s Cool to Be Me!
[8] Play Misty for Me
[9] The Last Round: Chuvalo vs. Ali’
[10] La Vie de Chateau

[1] Falling Down
[2] 9 Souls X
[3] Wax Mask X

[4] After Hours X
[5] Stuart Saves His Family X

[6] Crocodile Dundee 2
[7] The Princess Bride X
[8] Dragon Tales: It’s Cool to Be Me!
[9] They Were Expendable
[10] Damn Yankees

[1] The Avengers ’63
[2] Wax Mask X
[3] The Boondock Saints

[4] Valentin X
[5] 9 Souls X

[6] The Princess Bride X
[7] After Hours X
[8] Tekken
[9] Stuart Saves His Family X
[10] Runn Ronnie Run

[1]9 Souls X
[2]The Princess Bride X
[3]Stuart Saves His Family X

[4] The Last Valley X
[5] Wax Mask X

[6] Session 9 X
[7] Dragon Tales: It’s Cool to Be Me!
[8] Damn Yankees
[9] After Hours X
[10] Valentin X

Userid: 8003 9 Souls
Princess Bride

[1] Cheech Chong’s Up in Smoke
[2] Wax Mask
[3] Damn Yankees

[4] Dragon Tales: It’s Cool to Be Me!
[5] Top Secret!

[6] Agent Cody Banks 2: Destination London
[7] After Hours
[8] Stuart Saves His Family
[9] 9 Souls X
[10] The Beatles: Love Me Do

[1] Crocodile Dundee 2
[2] Session 9
[3] Falling Down

[4] Wax Mask
[5] After Hours

[6] Stuart Saves His Family
[7] 9 Souls X
[8] The Princess Bride X
[9] Dragon Tales: It’s Cool to Be Me!
[10] Scream 2

[1] The Insider
[2]A Nightmare on Elm Street 3
[3] Dennis the Menace Strikes Again

[4] Civil Brand
[5] 9 Souls X

[6] Falling Down
[7] The Princess Bride X
[8] Radiohead: Meeting People
[9] Crocodile Dundee 2
[10] Christmas in Connecticut

[1] 9 Souls X
[2]The Princess Bride X
[3]The Last Valley

[4]Stuart Saves His Family
[5]Wax Mask

[6]Dragon Tales: It’s Cool to Be Me!
[7]Session 9
[8]Crocodile Dundee 2
[9]Damn Yankees
[10]Cheech Chong’s Up in Smoke

epoch on an average for the Netflix-3M dataset. All models
typically converge within less than 10 epochs using the early
stopping criterion.

D. Case Study

In this section, we will further show the advantages of our
models through some quintessential examples.

In Table VIII, we provide the recommendation lists gener-
ated by three state-of-the-art baseline methods (i.e., IRGAN,
RNN, LambdaFM) as well as the proposed LSIC-V4 model
for two users who are randomly selected from the Netflix-3M
dataset. Our model can rank the positive movies in higher
positions than other methods. For example, the ranking of
the movie “9 souls” for user “8003” has increased from 5-
th position (by LambdaFM) to 1st position (by LSIC-V4).
Meanwhile some emerging movies such as “Session 9” and
“The Last Valley” that are truly attractive to the user “1382”
have been recommended by our models, whereas they are
ignored by baseline methods. In fact, we can include all
positive movies in the top-10 list for user “1382” and in top-
3 list for user “8003”. Our model benefits from the fact that
both dynamic and static knowledge are incorporated into the
model with adversarial training.

E. Re-rank Effect

From our experiments, we observe that it could be time-
consuming for RNN to infer all movies. In addition, users may
be interested in a few movies that are subject to a long-tailed
distribution. Motivated by these observations, we provide a re-
ranking strategy as used in [48]. Specifically, we first generate
N candidate movies by MF, and then re-rank these candidate
movies with our model. In this way, the inference time can
been greatly reduced. Figure 4 illustrates the performance
curves over the number of candidate movies (i.e. N) generated
by MF. We only report the Precision@5 and NDCG@5 results
due to the limited space, the other metrics exhibit a similar
trend. As shown in Figure 4, when the number of candidate
movies is small, i.e., N ≤ 100 for Netflix-3M dataset, the

0 10 20 30 40 50 60
Number of epoches

0.15

0.20

0.25

0.30

Pr
ec

isi
on

@
5

LSIC-V4-Generator
LSIC-V4-Discriminator

(a) Learning curves of LSIC-V4 w.r.t. Precision@5

0 10 20 30 40 50 60
Number of epoches

0.15

0.20

0.25

0.30

ND
CG

5

LSIC-V4-Generator
LSIC-V4-Discriminator

(b) Learning curves of LSIC-V4 w.r.t. NDCG@5
Fig. 3. Learning curves of LSIC-V4 (the discriminative model D and
generative model G) on Netflix-3M.

Percision@5 increases gradually with the increase in number
of candidate movies. Nevertheless, the performance decreases
rapidly with the increase in number of candidate movies when
N ≥ 100. It suggests that the generated candidates in the long-
tail side is inaccurate, and these candidate movies deteriorate
the overall performance of the re-rank strategy.

F. Cold Start Issue

To investigate the effectiveness of our model in dealing with
the cold-start problem, we also conduct experiments on the
Movielens dataset for the cold-start users. In this paper, the
users that have less than 10 ratings are categorized as cold-
start users and there are 73 cold-start users in Movielens

IEEE TRANSACTIONS ON CYBERNETICS xii

TABLE IX
PERFORMANCE ON THE COLD-START USERS IN MOVIELENS.

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MRR MAP

LSIC-V4 0.0356 0.0388 0.0447 0.0355 0.0373 0.0425 0.0952 0.0870
w/o Poster 0.0144 0.0217 0.0195 0.0153 0.0199 0.0190 0.0500 0.0435
w/o RL 0.0337 0.0345 0.0406 0.0319 0.0320 0.0367 0.0905 0.0819
IRGAN 0.0246 0.0320 0.0345 0.0225 0.0281 0.0316 0.0685 0.0653

5 25 45 65 85 105

The number of re-rank candidates
0.300

0.305

0.310

0.315

0.320

Pr
ec

isi
on

@
5

LSIC-V4

(a) Sensitivity of the candidate scale w.r.t. Precision@5

5 25 45 65 85 105

The number of re-rank candidates

0.295

0.300

0.305

0.310

ND
CG

@
5

LSIC-V4

(b) Sensitivity of the candidate scale w.r.t. NDCG@5
Fig. 4. Sensitivity of the candidate scale on Netflix-3M

dataset. The experimental results are reported in Table IX.
From the results we can observe that the cold-start users
benefit significantly from the movie posters. In particular, our
model achieves much better performance than other models
that do not consider the context information (e.g., IRGAN and
w/o poster) on cold-start users. This verifies the effectiveness
of our model, which incorporates the auxiliary information
(posters) for alleviating the cold-start problem.

On the other hand, based on our empirical observation from
Tables IV-VI, the previous models without considering context
features (e.g., BPR, PRFM, LambdaFM, RRN and IRGAN)
tend to recommend only the movies with a lot of ratings
(historical interactions). For example, the average ratings of
the top 3 recommended movies by LSIC-V4 is 185.3, which
is much less than that by the RNN model (i.e., 321.7). That
is, the new items (or cold-start items) have more chance to
appear in users’ recommendation lists by using our model.

G. Session Period Sensitivity
The above experimental results have shown that the session-

based (short-term) information indeed improves the perfor-
mance of top-N recommendation. We conduct an experiment
on Netflix-3M to investigate how the session period influ-
ences the final recommendation performance. As shown in

1 2 3 4 5 6 7 8 9

The session period (week)
0.20

0.22

0.24

0.26

0.28

0.30

0.32

Pr
ec

isi
on

@
5

LSIC-V4(only MF part)
LSIC-V4

(a) Sensitivity of the session period w.r.t. Precision@5

1 2 3 4 5 6 7 8 9

The session period (week)
0.20

0.22

0.24

0.26

0.28

0.30

0.32

ND
CG

@
5

LSIC-V4(only MF part)
LSIC-V4

(b) Sensitivity of the session period w.r.t. NDCG@5
Fig. 5. Sensitivity of the session period on Netflix-3M

Figure 5, the bars in purple color (below) describe the basic
performance of MF component while the red ones (above)
represent the extra improvement by the LSIC-V4. The RNN
plays an insignificant role in the very early sessions since
it lacks enough historical interaction data. For later period
of sessions, LSIC-V4 model achieves a clear improvement
over the model with only MF component till an optimal
value (when the session period is 7 weeks), after which the
evaluation results decrease slightly. This may be because that
the movie recommendation mainly relies on the short-term
preferences of users and evolutional attributes of movies.
With the increase of the session period, the performance of
movie recommendation may be hindered by the long-term
information.

VI. CONCLUSION

In this paper, we proposed a novel LSIC model, which lever-
aged both long- and short-term information for context-aware
movie recommendation using adversarial training. The adver-
sarial process simultaneously optimized a generative model
G and a discriminative model D via a minimax two-player
game. In particular, the discriminator D is implemented by a

IEEE TRANSACTIONS ON CYBERNETICS xiii

siamese network to incorporate long-term based and session-
based ranking model in a pair-wise scenario. We explored both
hard and soft mixture mechanisms to integrate MF and RNN
methods and learn the temporal dynamics with the help of the
long-term profiles. To further enhance the recommendation
performance, we also integrated the posters of movies that
were effective when few ratings were available. We conducted
extensive experiments to evaluate the effectiveness of LSIC on
two real-life datasets: Netflix Prize Contest data and Movie-
Lens data. Experimental results revealed that the proposed
LSIC model substantially and consistently outperformed the
baseline methods by a noticeable margin, obtaining the state-
of-the-art performances.

In the future, we would like to extend our method by
exploring a more advanced MF component to alleviate the
data sparsity problem. In addition, a mutual attention will be
designed to interactively learn attentions in the MF and RNN
components. With this design, our model can well represent
the long- and short-term information when performing movie
recommendation in current time-step. What’s more, we also
plan to further improve the performance of movie recom-
mendation by exploiting more auxiliary data such as movie
descriptions, movie reviews and user profiles by modifying
the generator and discriminator networks.

REFERENCES

[1] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, “Recommender
systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.

[2] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system
application developments: a survey,” Decision Support Systems, vol. 74,
pp. 12–32, 2015.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, 2009.

[4] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent
recommender networks,” in Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 2017, pp. 495–503.

[5] C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky, J. Leskovec, and
C. Potts, “No country for old members: User lifecycle and linguistic
change in online communities,” in Proceedings of the 22nd international
conference on World Wide Web. ACM, 2013, pp. 307–318.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] C.-Y. Wu, A. Ahmed, A. Beutel, and A. J. Smola, “Joint training of
ratings and reviews with recurrent recommender networks,” ICLR, 2016.

[8] R. Devooght and H. Bersini, “Collaborative filtering with recurrent
neural networks,” arXiv preprint arXiv:1608.07400, 2016.

[9] L. Zhao, Z. Lu, S. J. Pan, and Q. Yang, “Matrix factorization+ for movie
recommendation.” in IJCAI, 2016, pp. 3945–3951.

[10] P. Hao, G. Zhang, L. Martinez, and J. Lu, “Regularizing knowledge
transfer in recommendation with tag-inferred correlation,” IEEE Trans-
actions on Cybernetics, no. 99, pp. 1–14, 2017.

[11] M. Mao, J. Lu, G. Zhang, and J. Zhang, “Multirelational social recom-
mendations via multigraph ranking,” IEEE transactions on cybernetics,
vol. 47, no. 12, pp. 4049–4061, 2017.

[12] J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization
for collaborative prediction,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 713–719.

[13] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008, pp. 426–434.

[14] A. Hernando, J. Bobadilla, and F. Ortega, “A non negative matrix
factorization for collaborative filtering recommender systems based on
a bayesian probabilistic model,” Knowledge-Based Systems, vol. 97, pp.
188–202, 2016.

[15] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization
for online recommendation with implicit feedback,” in Proceedings
of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 2016, pp. 549–558.

[16] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix
factorization,” in Advances in neural information processing systems,
2005, pp. 1329–1336.

[17] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2008, pp. 1257–
1264.

[18] Y. Koren, “Collaborative filtering with temporal dynamics,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[19] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” in ICLR, 2015.

[20] C. Wu, J. Wang, J. Liu, and W. Liu, “Recurrent neural network based
recommendation for time heterogeneous feedback,” Knowledge-Based
Systems, vol. 109, pp. 90–103, 2016.

[21] Q. Cui, S. Wu, Q. Liu, and L. Wang, “A visual and textual recurrent neu-
ral network for sequential prediction,” arXiv preprint arXiv:1611.06668,
2016.

[22] R. Devooght and H. Bersini, “Long and short-term recommendations
with recurrent neural networks,” in Proceedings of the 25th Conference
on User Modeling, Adaptation and Personalization. ACM, 2017, pp.
13–21.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[24] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning. JMLR.org, 2016, pp. 1060–1069.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International Conference on Machine Learning,
2017, pp. 214–223.

[26] T.-H. Chen, Y.-H. Liao, C.-Y. Chuang, W.-T. Hsu, J. Fu, and M. Sun,
“Show, adapt and tell: Adversarial training of cross-domain image
captioner,” arXiv preprint arXiv:1705.00930, 2017.

[27] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[28] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang,
and D. Zhang, “Irgan: A minimax game for unifying generative and
discriminative information retrieval models,” in Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2017, pp. 515–524.

[29] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE transactions on knowledge and data engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[30] S. M. McNee, J. Riedl, and J. A. Konstan, “Being accurate is not
enough: how accuracy metrics have hurt recommender systems,” in
CHI’06 extended abstracts on Human factors in computing systems.
ACM, 2006, pp. 1097–1101.

[31] N. N. Liu and Q. Yang, “Eigenrank: a ranking-oriented approach to
collaborative filtering,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2008, pp. 83–90.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[33] W.-T. Chu and H.-J. Guo, “Movie genre classification based on poster
images with deep neural networks,” in Proceedings of the Workshop on
Multimodal Understanding of Social, Affective and Subjective Attributes.
ACM, 2017, pp. 39–45.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[35] N. Mohajerin and S. L. Waslander, “State initialization for recurrent
neural network modeling of time-series data,” in 2017 International Joint
Conference on Neural Networks. IEEE, 2017, pp. 2330–2337.

[36] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[37] Y. Ding, Y. Liu, H. Luan, and M. Sun, “Visualizing and understanding
neural machine translation,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, 2017, pp. 1150–1159.

IEEE TRANSACTIONS ON CYBERNETICS xiv

[38] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[39] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[40] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proceedings of the fourth
ACM conference on Recommender systems. ACM, 2010, pp. 39–46.

[41] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix
factorization for document context-aware recommendation,” in RecSys.
ACM, 2016, pp. 233–240.

[42] F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang, “Lambdafm:
learning optimal ranking with factorization machines using lambda sur-
rogates,” in Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 2016, pp. 227–
236.

[43] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence.
AUAI Press, 2009, pp. 452–461.

[44] R. Qiang, F. Liang, and J. Yang, “Exploiting ranking factorization
machines for microblog retrieval,” in Proceedings of the 22nd ACM
international conference on Conference on information & knowledge
management. ACM, 2013, pp. 1783–1788.

[45] C. Wang and D. M. Blei, “Collaborative topic modeling for recommend-
ing scientific articles,” in SIGKDD. ACM, 2011, pp. 448–456.

[46] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for
recommender systems,” in SIGKDD. ACM, 2015, pp. 1235–1244.

[47] M. J. Kusner and J. M. Hernández-Lobato, “Gans for sequences of
discrete elements with the gumbel-softmax distribution,” arXiv preprint
arXiv:1611.04051, 2016.

[48] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems. ACM, 2016, pp. 191–198.

Wei Zhao is currently a PhD candidate at the depart-
ment of Computer Science in Technische Universität
Darmstadt, Germany. He received his M.Eng degree
from University of Chinese Academy of Sciences in
2018. He was a visiting student in Nanyang Tech-
nological University, Singapore in 2018. Before that,
he received B.A degree from Fudan University. His
research interests are machine learning, information
retrieval and natural language processing.

Benyou Wang is currently a Marie Curie Re-
searcher, as well as a first-year Phd student at
University of Padova. He was a NLP research en-
gineer in Tencent. He received his M.S. degree in
Feb. 2017 from School of Computer Science and
technology, Tianjin University. Prior to that, Benyou
received his B.S. degree from the HUAT in 2014. His
research interests are natural language processing,
information retrieval, quantum language model, and
reinforcement learning.

Min Yang is currently an assistant professor at Shen-
zhen Institutes of Advanced Technology, Chinese
Academy of Sciences. She received her Ph.D. degree
from the University of Hong Kong in 2017. Her
current research interests include machine learning
and natural language processing.

Jianbo Ye received his B. S. degree in Mathematics
from the University of Science and Technology of
China in 2011. He worked as a research postgraduate
at The University of Hong Kong, from 2011 to
2012, and a research intern at Intel Labs, China
in 2013. He is currently a PhD candidate at the
College of Information Sciences and Technology,
The Pennsylvania State University. His research
interests include statistical modeling and learning,
numerical optimization and method, and affective
image modeling.

Zhou Zhao received the BS and the Ph.D. degrees
in computer science from the Hong Kong Univer-
sity of Science and Technology (HKUST), in 2010
and 2015, respectively. He is currently an associate
professor with the College of Computer Science,
Zhejiang University. His research interests include
machine learning, data mining and information re-
trieval.

Xiaojun Chen received his Ph.D. degree from
Harbin Institute of Technology in 2011. He is now an
assistant professor at College of Computer Science
and Software, Shenzhen University. His research in-
terests include machine learning, clustering, feature
selection and massive data mining.

Ying Shen is now an assistant professor in School
of Electronics and Computer Engineering (SECE)
at Peking University. She received her Ph.D. de-
gree from the University of Paris Ouest Nanterre
La Défense (France), specialized in Medical and
Biomedical Information Science. Her research inter-
est is mainly focused in the area of Medical Infor-
matics, Natural Language Processing and Machine
Learning.

