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Abstract Representing words, the basic units in language, is one of the most fun-
damental concerns in Information Retrieval, Natural Language Processing (NLP),
and related fields. In this paper, we reviewed most of the approaches of word
representation in vector space (especially state-of-the-art word embedding) and their
related downstream applications. The limitations, trends and their connection to
traditional vector space based approaches are also discussed.

Keywords Word representation · Word embedding · Vector space

1 Introduction

This volume illustrates how quantum-like models can be exploited in Information
Retrieval (IR) and other decision making processes. IR is a special and important
instance of decision making because, when searching for information, the users of
a retrieval system express their information needs through behavior (e.g., click-
through activity) or queries (e.g., natural language phrases), whereas a computer
system decides about the relevance of documents to the user’s information need.
By nature, IR is inherently an interactive activity which is performed by a user
accessing the collections managed by a system through very interactive devices.
These devices are immersed in a highly dynamic context where not only does the
user’s queries rapidly evolve but the collections of documents such as news or
magazine articles also use words with different meanings. The main link between
the “quantumness” of these models and IR is established by the vector spaces, which
have for a long time been utilized to design modern computerized systems such
as the search engines and they are currently the foundation of the most advanced
methods for searching for multimedia information.
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Whatever the mathematical model or the retrieval function, documents and
queries are mathematically represented as elements of sets, while the sets are labeled
by words or other document properties. Queries, which are the most used data for
expressing information needs, are sets or sequences of words or they are sentences
expressed in a natural language; queries are oftentimes very short (e.g., one word)
or occasionally much longer (e.g., a text paragraph). It is a matter of fact that the
Boolean models for IR by definition view words as document sets and answer search
queries with document sets obtained by set operators; moreover, the probabilistic
models are all inspired to the Kolmogorov theory of probability, which is related
to Boole’s theory of sets; in addition, the traditional retrieval models based on
vector spaces are eventually a means to provide a ranking or a measure to sets
because they assign a weight to words and then to documents in the sets labeled
by the occurring words. The implementation of content representation in terms of
keywords and posting lists reflects the view of words as sets of documents and
the view of retrieval operations as set operators. In this chapter, we will explain
that a document collection can be searched by vectors embedding different words
together, instead of by distinct words, by using the ultimate logic of vector spaces,
instead of sets.

Representing words is fundamental for tasks which involve sentences and
documents. Word embedding is a family of techniques that has recently gained a
great deal of attention and aims at learning vector representation of words that can
be used in these tasks. Generally speaking, embedding mainly consists in adopting a
mapping, in which a fixed-length vector is typically used to encode and represent an
entity, e.g., word, document, or a graph. Technically, in order to embed an object X
in another object Y , the embedding is an injective and structure-preserving map
f : X → Y , e.g., user/item embedding [6] in item recommendation, network
embedding [23], feature embedding in manifold learning [89], and word embedding.
In this chapter, we will focus on word embedding techniques, which embed words
in a low-dimensional vector space.

Word embedding is driven by the Distributional Hypothesis [33, 38], which
assumes that linguistic items which occur in similar contexts should have similar
meanings. Methods for modeling the distributional hypothesis can be mainly
divided into the following categories:

– Vector-space models in Information Retrieval, e.g., [121], or representation in
Semantic Spaces [67]

– Cluster-based distributional representation [17, 63, 79]
– Dimensionality reduction (matrix factorization) for document-word/word-

word/word-context co-occurring matrix, also known as Latent Semantic Analysis
(LSA) [24]

– Prediction based word embedding, e.g., using neural network-based approaches.

LSA was proposed to extract descriptors that capture word and document
relationships within one single model [24]. In practice, LSA is an application of
Singular Value Decomposition (SVD) to a document-term matrix. Following LSA,
Latent Dirichlet Allocation (LDA) aims at automatically discovering the main topics
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in a document corpus. A corpus is usually modeled as a probability distribution over
a shared set of topics; these topics in turn are probability distributions over words,
and each word in a document is generated by the topics [12]. This paper focuses
on the geometry provided by vector spaces, yet is also linked to topic models, since
a probability distribution over documents or features is defined in a vector space,
the latter being a core concept of the quantum mechanical framework applied to
IR [68, 69, 110].

With the development of computing ability for exploiting large labeled data,
neural network-based word embedding tends to be more and more dominant, e.g.,
Computer Vision (CV) and Natural Language Processing. In the NLP field, neural
network-based word embedding was firstly investigated by Bengio et al. [7] and
further developed by [21, 75]. Word2vec [70]1 adopts a more efficient way to train
word embedding, by removing non-linear layers and other tricks, e.g., hierarchical
softmax and negative sampling. In [70] the authors also discussed the additive
compositional structure, which denotes that word meanings can be composited
with the addition of their corresponding vectors. For example, king − man =
queen−women = royal. This capability of capturing relationships among words
was further discussed in [35] where a theoretical justification was provided. More
importantly, Mikolov et al. [70] published open-source well-trained general word
vectors, which made word embedding easy to use in various tasks.

In order to intuitively show the word vectors, some selected words (52 words
about animals and 110 words about colors) are visualized in a 2-dimensional plane
(as shown in Fig. 1) from one of the most popular Glove word vectors,2 in which
the position of the word is according to the reduced vector through a dimension
reduction approach called T-SNE. It is shown that all the words are nearly clustered
into two groups about colors and animals, respectively. For example, the word
vectors of “rat” and “dog” are close to the word “cat,” which is intuitively consistent
to the Distributional Hypothesis since they (“cat” and “rat,” or “cat” and “dog”) may
co-occur together with high frequencies.

Word embedding provides a more flexible and fine-grained way to capture the
semantics of words, as well as to model the semantic composition of bigger-
granularity units, e.g., from words to sentences or documents [71]. Some appli-
cations of word embedding will be discussed in Sect. 3. Although word embedding
techniques and related neural network approaches have been successfully used in
different IR and NLP tasks, they have some limitations, e.g., the polysemy and
out-of-vocabulary problems. These issues have motivated further research in word
embedding; Sect. 4.2 will discuss some of the current trends in word embedding
that aim at addressing these issues. Moreover, we will discuss the link between the
word vector representations and state-of-the-art approaches in modeling thematic
structures.

1https://code.google.com/archive/p/word2vec/.
2The words vectors are downloaded from http://nlp.stanford.edu/data/glove.6B.zip, with 6B
tokens, 400K uncased words, and 50-dimensional vectors.

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/data/glove.6B.zip
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Fig. 1 The visualization of some selected words

2 Background

2.1 Distributional Hypothesis

Word embedding is driven by the Distributional Hypothesis [38]. The core of
distributional hypothesis states that linguistic items with similar distributions have
similar meanings and hence words with similar distributions should have similar
representations. The distributional property is usually induced from document or
textual neighborhoods (like sliding windows).

Some of the methods relying on the Distributional Hypothesis and the basic idea
underlying them are reported below:
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– Language model p(wk|wk−t , wk−t+1, . . . wk−1): predicts the current word using
previous words [7].

– Sequential scoring p(wk−t , wk−t+1, . . . wk): predicts whether the given sentence
is a legal one [21].

– Skip-gram p(wk| ∀wi ∈ {wi | abs(k− i) < t} ): predicts a co-occurring word for
each word [70].

– CBOW p(wk|wk−t , wk−t+1, . . . wk−1, . . . wk+t ): predicts a target word with
context words (both previous ones and following ones) [70].

– Glove p(#(wi, wj )window|wi,wj ): predicts the co-occurring count between a
word pair [78].

2.2 A Brief History of Word Embedding

While the Distributional Hypothesis was proposed many decades ago, the tech-
niques of word embedding trained in a neural network has a much shorter history
of about one and half decades [7], as mentioned in Sect. 1. Some typical ways to
generate word vectors are introduced below.

NNLM The Neural Network Language Model (NNLM) [7] preliminarily aims to
build a language model, while learning word embedding is not the main target.
However, this is the first work in learning word vectors in a neural network (Fig. 2).

C&W The Collobert and Weston (C&W) approach was proposed in [21] in order to
predict the fluency of a given sequence—see Fig. 3. One of the tasks in [21] assigns
language modeling as a simple binary classification task: “if the word in the middle
of the input window is related to its context or not” [21].

Skip-Gram Skip-gram balances a trade-off between performance and simplicity.
As shown in Fig. 4, Skip-gram uses a word to predict one of its neighboring words.

Fig. 2 NNLM concatenates
all the word vectors in a
sentence and then predicts the
next word. → refers to the
information flow in the
forward neural network,
while the circle denotes the
neurons in the network. |V | is
the size of the word
vocabulary [58]
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Fig. 3 C&W concatenates all the word vectors to predict whether it is a natural sentence or if it
has replaced the center word with a random word [58]

Fig. 4 Skip-gram directly uses one word to predict its neighboring word [58]

Fig. 5 CBOW uses the average embedding of the contextual words to predict the target word,
where the contextual words are surrounded by the target word [58]

CBOW As shown in Fig. 5, CBOW uses context words to predict the current word.
The difference between Skip-gram and CBOW is that in order to predict the target
word, CBOW uses many words as the context, while Skip-gram uses only one
neighboring word.
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Glove Another popular word embedding named Glove3 [78] takes advantage of
global matrix factorization and local context window methods. It is worth mention-
ing that [60] explains that the Skip-gram with negative sampling derives the same
optimal solution as matrix (Point-wise Mutual Information (PMI)) factorization.

3 Applications of Word Embedding

According to the input and output objects, we will discuss word-level applications in
Sect. 3.1, sentence-level applications in Sect. 3.2, pair-level applications in Sect. 3.3,
and seq2seq generation applications in Sect. 3.4. These applications can be the
benchmarks to evaluate the quality of word embedding, as introduced in Sect. 3.5.

3.1 Word-Level Applications

Based on the learned word vector from a large-scale corpus, the word-level property
can be inferred. Regarding single-word level property, word sentiment polarity is
one of the typical properties. Word-pair properties are more common tasks, like
word similarity and word analogy.

The advantage of word embedding is that: all the words, even from a compli-
cated hierarchical structure like WordNet [31],4 are embedded in a single word
vector, thus leading to a very simple data structure and easy incorporation with a
downstream neural network. Meanwhile, this simple data structure, namely a word-
vector mapping, also provides some potential to share different knowledge from
various domains.

3.2 Sentence-Level Application

Regarding sentence-level applications, the two typical tasks are sentence classi-
fication and sequential labeling, depending on how many labels the task needs.
For a given sentence, there is only one final label for the whole sentence for text
classification, where the number of labels in the sequential labeling is related to the
number of tokens in the sentence (Fig. 6).

3https://nlp.stanford.edu/projects/glove/.
4An example of hierarchical structures is shown at the following address: http://people.csail.mit.
edu/torralba/research/LabelMe/wordnet/test.html.

https://nlp.stanford.edu/projects/glove/
http://people.csail.mit.edu/torralba/research/LabelMe/wordnet/test.html
http://people.csail.mit.edu/torralba/research/LabelMe/wordnet/test.html
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Fig. 6 Sentence-level
applications: sentence
classification and sequential
labeling

token token token token

Sequential labelling

Classification
S

Sentence Classification Sentence classification aims to predict the possible label
for a given sentence, where the label can be related to the topic, the sentimen-
tal polarity, or whether the mail is spam. Text classifications were previously
overviewed by Zhai [1], who mainly discussed the traditional textual representation.
To some extent, trained word embedding from a large-scale external corpus (like
Wikipedia pages or online news) is commonly used in IR and NLP tasks like
text classification. Especially for a task with limited labeled data, in which it is
impossible to train effective word vectors (usually with one hundred thousand
parameters that need to be trained) due to the limited corpus, pre-trained embedding
from a large-scale external corpus could provide general features. For example,
average embedding (or with a weighted scheme) could be a baseline for many
sentence representations and even document representations. However, due to
the original error for the embedding training process in the external corpus and
the possible domain difference between the current dataset and external corpus,
adopting the embedding as features usually will not achieve significant improvement
over traditional bag-of-word models, e.g., BM25 [88].

In order to solve this problem, the word vectors trained from a large-scale
external corpus are only adopted as the initial value for the downstream task [51].
Generally speaking, all the parameters of the neural network are trained from scratch
with a random or regularized initialization. However, the scale of the parameter in
the neural network is large and the training samples may be small. Moreover, the
trained knowledge from another corpus is expected to be used in a new task, which is
commonly used in Computer Vision (CV) [41]. In an extreme situation, the current
dataset is large enough to implicitly train the word embedding from scratch; thus,
the effect of pre-initial embedding could be of little importance.

Firstly, multi-layer perception is adopted over the embedding layers. Kim et
al. [51] first proposed a CNN-based neural network for sentence classification
as shown in Fig. 7. The other typical neural networks named Recurrent Neural
Network (and its variant called Long and Short Term Memory (LSTM) network
[43] as shown in Fig. 8) and Recursive Neural Network [36, 81], which naturally
process sequential sentences and tree-based sentences, are becoming more and more
popular. In particular, word embedding with LSTM encoder–decoder architecture
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Fig. 7 CNN for sentence modeling [52] with convolution structures and max pooling

Fig. 8 LSTM. The left
subfigure shows a recurrent
structure, while the right one
is unfolded over time

[3, 18] outperformed the classical statistic machine translation,5 which dominates
machine translation approaches. Currently, the industrial community like Google
adopts completely neural machine translation and abandons statistical machine
translation.6

Sequential Labeling Sequence labeling aims to classify each item of a sequence
of observed value, with the consideration of the whole context. For example, Part-
Of-Speech (POS) tagging, also called word-category disambiguation, is the process
of assignment of each word in a text (corpus) to a particular part-of-speech label
(e.g., noun and verb) based on its context, i.e., its relationship with adjacent and
related words in a phrase or sentence. Similar to the POS tagging, the segment tasks
like Named Entity Recognition (NER) and word segment can also be implemented
in a general sequential labeling task, with definitions of some labels like begin label
(usually named “B”), intermediate label (usually named “O”), and end label (usually
named “E”). The typical architecture for sequence labeling is called BiLSTM-CRF
[46, 59], which is based on bidirectional LSTMs and conditional random fields, as
shown in Fig. 9.

5http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf.
6https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-
translate/.

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
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Fig. 9 LSTM-CRF for named entity recognition [59]

Document-Level Representation Similar to the methods for sentence-level repre-
sentation, a document with mostly multiple sentences, which can also be considered
a long “sentence,” needs an adaption for more tokens. A document mostly consists
in multiple sentences. If we interpret a document as a long sentence, we can use
the same approaches proposed for the sentence-level applications while taking into
account the fact that there are more tokens. For example, a hierarchical architecture
is usually adopted for document representation, especially in RNN, as shown
in Fig. 10. Generally speaking, all the sentence-level approaches can be used in
document-level representation, especially if the document is not so long.

3.3 Sentence-Pair Level Application

The difference between sentence applications and sentence-pair applications is the
extra interaction module (we call it a matching module), as shown in Fig. 11.
Evaluating the relationship between two sentences (or a sentence pair) is typically
considered a matching task, e.g., information retrieval [73, 74, 129], natural lan-
guage inference [14], paraphrase identification [27], and question answering. It is
worth mentioning that the Reading Comprehension (RC) task can also be a matching
task (especially question answering) when using an extra context, i.e., a passage
for background knowledge, while the question answering (answer selection) does
not have specific context. In the next subsection, we will introduce the Question
Answering task and Reading Comprehension task.
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Fig. 10 Hierarchical recurrent neural network [64]

Text Representation

Text Representation

Text Representation

Text representation

Classification task
Sequential labelling

Matching taskInteraction

Fig. 11 The figure shows that the main difference between a sentence-pair task and a sentence-
based task is that there is one extra interaction for the matching task
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Fig. 12 A demo of SQuAD
dataset [85]

Question Answering Differently from expert systems with structured knowledge,
question answering in IR is more about retrieval and ranking tasks in limited
unstructured document candidates. In some literature, reading comprehension is
also considered a question answering task like SQuAD QA. Generally speaking,
reading comprehension is a question answering task in a specific context like a long
document with some internal phrases or sentences as answers, as shown in Fig. 12.
Table 1 reports current popular QA datasets.

In order to compare the neural matching model and non-neural models, we
focus on TREC (answer selection), which has limited answer candidates, instead
of an unstructured document as context in reading comprehension. Some matching
methods are shown in Table 2, which mainly refers to the ACL wiki page.7

3.4 Seq2seq Application

Seq2seq is a kind of task with both input and output as sequential objects, like a
machine translation task. It mainly uses an encoder–decoder architecture [19, 100]
and further attention mechanisms [3], as shown in Fig. 13. Both the encoder and
decoder can be implemented as RNN [19], CNN [34], or only attention mechanisms
(i.e., Transformer [111]).

7https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art).

https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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Table 1 Popular QA dataset

Dataset Characteristics Main institution Venue

TREC QA [119]a Open-domain question answering CMU EMNLP
2007

Insurance QA [32] Question answering for insurance IBM Watson ASRU 2015

Wiki QA [123] Open-domain question answering MS EMNLP
2015

Narrative QA [53] Reading Comprehension DeepMind TACL 2018

SQuAD 1.0 [85] Questions for machine comprehension Standford EMNLP
2016

MS Marco [76] Human-generated machine reading MS. NIPS 2016

NewsQA [107, 108] Reading comprehension Maluuba RepL4NLP
2017

TriviaQA [48] Reading comprehension distantly
supervised labels

Allen AI ACL 2017

SQA [47] Sequential question answering U. of Maryland
& MS.

ACL 2017

CQA [102] QA with knowledge base of web Tel-Aviv
university

NAACL
2018

CSQA [92] Complex sequential QA IBM AAAI 2018

QUAC [20]b Question answering in context Allen AI EMNLP
2018

SQuAD 2.0 [84] SQuAD with unanswered questions Standford ACL 2018

CoQA [87]c Conversational question answering Standford Aug. 2018

Natural questions [57] Natural questions in Google search Google TACL 2019

The frequent publishing of QA datasets demonstrates that the academic community is paying more
and more attention to this task. Almost all the researchers in this community tend to use word
embedding-based neural networks for this task
ahttp://cs.stanford.edu/people/mengqiu/data/qg-emnlp07-data.tgz
bhttp://quac.ai/
chttps://stanfordnlp.github.io/coqa/

3.5 Evaluation

The basic evaluations of word embedding techniques are based on the above
applications [94], e.g., word-level evaluation and downstream NLP tasks like those
mentioned in the last section, as shown in [58]. Especially for a downstream task,
there are two common ways to use word embedding, namely as fixed features or by
treating it only as initial weights and fine-tuning it. We mainly divide it into two part
of evaluations, i.e., context-free word properties and embedding-based downstream
NLP tasks, while the latter may involve the context and the embedding can be fine-
tuned.

Word Property Examples of the context-free word properties include word polar-
ity classification, word similarity, word analogy, and recognition of synonyms and
antonyms. In particular, one of the typical tasks is called an analogy task [70], which

http://cs.stanford.edu/people/mengqiu/data/qg-emnlp07-data.tgz
http://quac.ai/
https://stanfordnlp.github.io/coqa/
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Table 2 State-of-the-art methods for sentence selection, where the evaluation relies on the TREC
QA dataset

Algorithm Reference MAP MRR

Mapping dependencies trees [82] AI and math
Symposium 2004

0.419 0.494

Dependency relation [22] SIGIR 2005 0.427 0.526

Quasi-synchronous grammar [119] EMNLP 2007 0.603 0.685

Tree edit models [42] NAACL 2010 0.609 0.692

Probabilistic tree edit models [118] COLING 2010 0.595 0.695

Tree edit distance [124] NAACL 2013 0.631 0.748

Question classifier, NER, and tree kernels [95] EMNLP 2013 0.678 0.736

Enhanced lexical semantic models [126] ACL 2013 0.709 0.770

DL with bigram+count [128] NIPS 2014 DL
workshop

0.711 0.785

LSTM—three-layer BLSTM+BM25 [116] ACL 2015 0.713 0.791

Architecture-II [32, 45] NIPS 2014 0.711 0.800

L2R + CNN + overlap [96] SIGIR 2015 0.746 0.808

aNMM: [122] attention-based neural matching model CIKM 2016 0.750 0.811

Holographic dual LSTM architecture [104] SIGIR 2017 0.750 0.815

Pairwise word interaction modeling [40] NAACL 2016 0.758 0.822

Multi-perspective CNN [39] EMNLP 2015 0.762 0.830

HyperQA (hyperbolic embeddings) [103] WSDM 2018 0.770 0.825

PairwiseRank + multi-perspective CNN [86] CIKM 2016 0.780 0.834

BiMPM [120] IJCAI 2017 0.802 0.875

Compare-aggregate [8] CIKM 2017 0.821 0.899

IWAN [97] EMNLP 2017 0.822 0.889

IWAN + sCARNN [106] NAACL 2018 0.829 0.875

NNQLM [131] AAAI 2018 0.759 0.825

Multi-cast attention networks (MCAN) [105] KDD 2018 0.838 0.904

Recent papers about TREC QA used embedding-based neural network approaches, while previous
ones were based on some traditional methods like IR approaches and edit distance

mainly targets both the syntactic and semantic analogies. For instance, “man is to
woman” is semantically similar to “king is to queen,” while “predict is to predicting”
is syntactically similar to “dance is to dancing.” Word Embedding methods achieve
good performance in the above word-level tasks, which demonstrates that the word
embedding can capture the basic semantic and syntactic properties of the word.

Downstream Task If word embedding is used in a context, which means we
consider each word in a phrase or sentence for a specific target, we can train the
word embedding by using the labels of the specific task, e.g., sequential labeling,
text classification, text matching, and machine translation. These tasks are divided
by the pattern of input and output, shown in Table 3.



Representing Words in Vector Space and Beyond 97

Fig. 13 An illustration of the
proposed Seq2seq (RNN
Encoder–Decoder)

Table 3 The difference of the downstream tasks

Algorithm Input Output Typical tasks Typical models

Text classification S R Sentiment analysis, topic
classification

Fastext/CNN/RNN

Text matching (S1, S2) R QA, reading comprehension aNMM,DSSM

Sequential labeling S R|S| POS, word segmentation,
NER

LSTM-CRF

Seq2Seq S1 S2 machine translation,
abstraction

LSTM/Transformer
encoder–decoder

Generally speaking, the tasks for the word properties can partially reflect the
quality of the word embedding. However, the final performance in the downstream
tasks may vary. It is more reasonable to directly assess it in the real-world
downstream tasks as shown in Table 3.

4 Reconsidering Word Embedding

Some limitations and trends of word embedding are introduced in Sects. 4.1 and 4.2.
We also try to discuss the connections between word embedding and topic models
in Sect. 4.3. In Sect. 4.4, the dynamic properties of word embedding are discussed
in detail.
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4.1 Limitations

Limitation of Distributional Hypothesis The first concern directly targets the
effectiveness of the distributional hypothesis. Lucy and Gauthier [66] find that while
word embeddings capture certain conceptual features such as “is edible” and “is a
tool,” they do not tend to capture perceptual features such as “is chewy” and “is
curved,” potentially because the latter are not easily inferred from distributional
semantics alone.8

Lack of Theoretical Explanation Generally, humans perceive the words with
various aspects other than only the semantic aspect, e.g., sentimental polarity and
semantic hierarchy like WordNet. Thus, mapping a word to a real-valued vector
is a practical but preliminary method, which leads to limited hints for humans to
understand. For a given word vector, it is hard for humans to know what exactly
the word means; the scalar value of each element in a word vector does not provide
too much physical meaning. Consequently, it is difficult to interpret obtained vector
space from the human point of view.

Polysemy Problem Another problem with word embeddings is that they do not
account for polysemy, instead assigning exactly one vector per surface form. Several
methods have been proposed to address this issue. For example, Athiwaratkun
and Wilson [2] represent words not by single vectors, but by Gaussian probability
distributions with multiple modes—thus capturing both uncertainty and polysemy.
Upadhyay et al. [109] leverage multi-lingual parallel data to learn multi-sense word
embeddings, for example, the English word “bank,” which can be translated into
both the French words banc and banque (evidence that “bank” is polysemous), and
help distinguish its two meanings.

Out-Of-Vocabulary Problem With a pre-trained word embedding, some words
may not be found in the vocabulary of the pre-trained word vectors, that is,
the Out-Of-Vocabulary (OOV) problem. If there are many OOV words, the final
performance decreases largely due to the fact that we use a partial initialization
from the given word vectors, while other words are randomly initialized, instead
of initializing all the weights. This happened more frequently in some professional
domains, like medicine text analysis, since it is not easy to find some professional
words in a general corpus like Wikipedia.

Semantic Change Over Time One of the limitations of most word embedding
approaches is that they assume that the meaning of a word does not change over
time. This assumption can be a limitation when considering corpora of historic texts
or streams of text in newspapers or social media. Section 4.4 will discuss some
recent works which aim to explicitly include the temporal dimensions in order to
capture how the word meaning changes over time.

8http://www.abigailsee.com/2017/08/30/four-deep-learning-trends-from-acl-2017-part-1.html.

http://www.abigailsee.com/2017/08/30/four-deep-learning-trends-from-acl-2017-part-1.html
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4.2 Trends

Interpretability One of the definitions of “interpretability” is proposed by Lipton
[65]. In particular, Lipton [65] identifies two broad approaches to interpretability:
post-hoc explanations and transparency. Post-hoc explanations take a learned model
and draw some useful insights from it; typically these insights provide only a
partial or indirect explanation of how the model works. The typical examples are
visualization (e.g., in machine translation [26]) and transfer learning.

Transparency asks more directly “how does the model work?” and seeks to
provide some way to understand the core mechanisms of the model itself. As
Manning said, “Both language understanding and artificial intelligence require
being able to understand bigger things from knowing about smaller parts.”9 Firstly,
it is more reasonable to build a bottom-up system with linguistically structured
representations like syntax or semantic parsers and sub-word structures (refer
to Sect. 4.2) than an end-2-end system without consideration of any linguistic
structures. Moreover, we can use some constrains to normalize each subcomponent
and make it understandable for humans, as well as relieve the non-convergent
problems. For instance, an attention mechanism [3] is one of the most successful
mechanisms from the point view of normalization. For an unconstrained real-valued
vector, it is hard to understand and know how it works. After the addition of a
softmax operation, this vector denotes a multinomial probability distribution in
which each element ranges from 0 to 1 and the sum of the vectors equals 1.

Contextualized Word Embedding Previously, word embedding was static, which
means it did not depend on the context and it was one-to-one mapping from a word
to a static vector. For example, the word “bank” has at least two meanings, i.e., “the
land alongside or sloping down to a river or lake” and “a financial establishment
that invests money deposited by customers, pays it out when required, makes
loans at interest, and exchanges currency.” However, the word in a finance-related
context and a river-related context could be mapped into the same fixed vector,
which is not reasonable for language. Instead of storing a static look-up table,
contextualized word embedding learns a language model to generate a real-time
word vector for each word based on the neighboring word (context). The first model
was proposed with the name Embedding from Language MOdel (ELMO) [80], and
it was further investigated by Generative Pre-Training (GPT) [83] and BERT [25].
More specifically, BERT obtained new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE benchmark, MultiNLI
accuracy, and the SQuAD with huge improvements.

Linguistically Enhanced Word Embedding One of the main criticisms of word
embedding is that it ignores the linguistic knowledge and instead adopts a brute
force approach which is totally driven by data. However, there are already many

9https://nlp.stanford.edu/manning/talks/Simons-Institute-Manning-2017.pdf.

https://nlp.stanford.edu/manning/talks/Simons-Institute-Manning-2017.pdf


100 B. Wang et al.

linguistic resources for words, e.g., WordNet and sentimental lexicon. Incorporation
of the linguistic knowledge trends in the current paradigm of the NLP can relieve
the dependence of data. These linguistic resources are expected to enhance the
representative power of word embedding, which may be used in higher layers than
word embedding layers like syntax structures [101] or only word embedding with
WordNet and related lexicon resources [30, 61].

Sub-Word Embedding We briefly discussed the OOV problem in Sect. 4.1.
Previous solutions for relieving it were commonly based on empirical insights,
e.g., assigning a special token to all the OOV words. In [132] character-based
embedding for text classification was adopted, avoiding directly processing the
word-level embedding. In the sub-word embedding, there are no OOV problems
since the proposed approaches directly build the word embedding with the units with
smaller granularity which may have a limited number. For example, one of the sub-
word approaches in English is based on characters, which are limited to a–z, A–Z,
0–9, punctuation, and other special symbols. Moreover, a character level approach
could be beneficial for some specific languages, like Chinese, that can make use
of smaller-granularity units which are smaller than words but also have abundant
semantic information, like components. Sub-word regularization [54] trains the
model with multiple sub-word segmentation (based on a unigram language model)
probabilistically sampled during training. These works demonstrate that there is
some potential to incorporate some fine-refined linguistic knowledge in the neural
network [13, 54].

Advanced Word Embedding: Beyond one Fixed Real-Valued Vector More
recently, different types of word embedding beyond real-valued vectors have been
developed, for example:

– Gaussian embedding [112] assigns a Gaussian distribution for each word,
instead of a point vector in a low-dimension space. The advantages are that
it naturally captures uncertainty and expresses asymmetries in the relationship
between two words.

– Hyperbolic embedding [77, 93] embeds words as points in a Cartesian product
of hyperbolic spaces; therefore, the hyperbolic distance between two points
becomes the Fisher distance between the corresponding probability distribution
functions (PDFs). This additionally derives a novel principled “is-a” score on top
of word embeddings that can be leveraged for hypernymy detection.

– Meta embedding [50, 127] adopts multiple groups of word vectors and adap-
tively obtains a word vector by leveraging all the word embeddings.

– Complex-valued embedding [62, 114] formulates a linguistic unit as a complex-
valued vector, and links its length and direction to different physical meanings:
the length represents the relative weight of the word, while the direction is viewed
as a superposition state. The superposition state is further represented in an
amplitude-phase manner, with amplitudes corresponding to the lexical meaning
and phases implicitly reflecting the higher-level semantic aspects such as polarity,
ambiguity, or emotion.
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4.3 Linking Word Embedding to Vector-Space Based
Approaches and Representation of Thematic Structures

Deriving the Topic Distribution from Word Embedding Research on the rep-
resentation of themes in an unstructured document corpus—finding word patterns
in a document collection—dates back to the 1990s, i.e., to the introduction of
LSA [24]. A subsequent extension that exploits a statistical model was proposed
By Hofmann in[44]. That model, named Probabilistic Latent Semantic Indexing
(PLSI), relies on the aspect model, a latent variable model for co-occurrence
data where an occurrence—in our case a word occurrence—is associated with an
unobserved/latent variable. The work by Hofmann and subsequent works rely on
the “same fundamental idea—that a document is a mixture of topics—but make
slightly different statistical assumptions” [99]. For instance, in [12] Blei et al.
extended the work by Hofmann making an assumption on how the mixture weights
for the topics in a document are generated, introducing a Dirichlet prior. This line
of research is known as topic modeling, where a topic is interpreted as a group of
semantically related words. Since the focus of this paper is not on topic modeling,
in the remainder of this section we are going to introduce only the basic concepts
needed to discuss possible links with word embedding approaches; the reader can
refer to the work reported in [9, 11, 15, 99] for a more comprehensive discussion on
the difference among the diverse topic models and the research trends and direction
in topic modeling.

As mentioned above, probabilistic topic models consider the document as a
distribution over topics, while the topic is a distribution over words. In PLSI no prior
distributions are adopted and the joint probability distribution between document
and word is expressed as follows:

p(w, d) =
∑

c∈C
p(w, d, c) = p(d)

∑

c∈C
p(c,w|d) = p(d)

∑

c∈C
p(c|d)p(w|c),

(1)
where d is a document, while w is a specific word and C is the collection of topics.
A crucial point of topic models is how to estimate the p(c|d) and p(w|c).

Using an “empirical” approach, we can also get the p(c|d) and p(w|c) from
word embedding. Suppose that we obtain a word embedding, i.e., a mapping from a
word (denoted as an index with a natural number) to a dense vector N → Rn. For a
given sentence S with words sequence {w1, w2, . . . wn}, we can get a representation
for s with an average embedding like [49], namely d = ∑n

i=1 wi . It is easy to define

a topic with distribution p(w|c), represented as: cj = ∑|V |
i=1 pwi |cwi, cj ∈ C. Then

we can obtain the following topic distribution of a document:

p(cj |d) = e−||d−cj ||2
∑|C|

i e−||d−ci ||2
. (2)
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The relationship between word embedding and topic models has been addressed
in the literature. For instance, the work reported in [60] shows that a special case of
word embedding, i.e., Skip-gram, has the same optimal solution as the factorization
of a shifted Point-wise Mutual Information (PMI) matrix.10 Empirically, the count-
based representations and distributed representations can be combined together with
complementary benefits [78, 115].

Recent works focused on exploiting both methods. The discussion of previous
approaches reported in [98] reports on two lines of research: methods used to
improve word embedding through the adoption of topic models, which addresses
the polysemy problem; methods used to improve topic models through word
embedding, which obtains more coherent words among the top words associated
with a topic. These approaches mainly rely on a pipeline strategy, “where either a
standard word embedding is used to improve a topic model or a standard topic model
is used to learn better word embeddings” [98]. The limitation of these approaches
is the lack of capability to exploit the mutual strengthening between the two, which
a joint learning strategy, in principle, could exploit. This is the basic intuition
underlying the work reported in [98]. Another example is lda2vec where the basic
idea was “modifying the Skip-gram Negative-Sampling objective in [71] to utilize
document-wide feature vectors while simultaneously learning continuous document
weights loading onto topic vectors.” The work reported in [117] proposes a different
approach relying on a “topic-aware convolutional architecture” and a reinforcement
learning algorithm in order to address the task of text summarization.

Regarding the Contextual Windows The previous subsection suggests possible
connections between word embedding and the representation of the thematic
structure in document corpora, e.g., through topic models. Vector space based
approaches in IR, topic models, matrix factorization, and word embedding can be
considered as different approaches relying on distributional hypothesis as discussed
in Sect. 1. One of the differences among these methods may be how to choose the
size of the contextual window. In this paper, we classify the contextual window into
several sizes, i.e., “character → word → phase/N-gram → clause → sentence →
paragraph → document,” ordered from the smallest to the biggest granularity. For
example, Vector Space Model (VSM) in IR usually chooses the whole document as
the context; thus, it may capture the document-level feature of text, like the thematic
structure. Approaches based on word-word matrix factorization usually set a smaller
window size to statistically analyze the co-occurrence between words—similar to
the windows of CBOW [70], thus targeting a smaller context in order to capture the
word-level feature related to its word meaning.

Depending on the context size, features in vector space based approaches in
IR are already at a relatively high level, e.g., the TFIDF vector or the language
model [130], and they can be used directly for relatively downstream task like

10The shifted PMI matrix is “the well-known word-context PMI matrix from the word-similarity
literature, shifted by a constant offset” [60].
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document ranking. Lower-level word features of word-word matrix factorization
(or CBOW) can be used directly for the relatively upstream task like morphology,
lexicon, and syntax, and it needs some abstraction components to extract from the
low-level features to high-level features. On the other hand, abstraction from the
low-level features to high-level features may imply a loss of some fundamental
lexical meaning. The low-level features (word-word matrix factorization or CBOW)
are usually considered a better basic input for another “stronger” learning model—
e.g., when using multiple layers of non-linear abstraction—compared to higher-level
features.

4.4 Towards Dynamic Word Embedding

One of the limitations of most representations of words, documents, and themes is
that they do not consider the temporal dimension. This is crucial when considering
corpora such as historical document archives, newspapers, or social media, e.g.,
tweets, that consist in a continuous stream of informative resources. The use of these
“time-stamped” resources is useful not only for general tasks but also for specialist
users. Indeed, the tasks performed by the specialists of a discipline need to make
hypotheses from data, for example, by means of longitudinal studies. This is the
case for the tasks performed by specialists in the field of Social Science, Humanities,
Journalism, and Marketing.

Let us consider, for instance, the case of sociologists that study the public
perception of science and technology by the public opinion—this line of research
is known as STS, Science and Technology Studies. The study of how some science
and technology-related issues are discussed by the media, e.g., newspapers, could
be useful in providing policy makers with insights on the public perception of some
issues on which they should or intend to take actions or provide guidance on the
way these issues should be publicly discussed (e.g., on the use of “sensible” words
or aspects related to the issues). In this context, relevant information can be gained
from how the meaning of a word or how the perception of an issue related to a word
change through time.

Previous works on topic modeling addressed the issue of including the temporal
dimension, specifically, the issue that topics can change over time. In [72] Mimno
proposes a possible approach to visualize the topic coverage across time starting
from topic learnt using a “static” approach: given the probabilities and the topic
assignment estimated via LDA, the topic trend can be visualized by counting the
number of words in each topic published in a given year and then normalizing over
the total number of words for that year. Other works embedded the time dependence
directly in the statistical model. One of the earliest works is that proposed in [10]
where dynamic topic models were introduced. The underlying assumption is that
time is divided into time slices, e.g., by years; documents in a specific time slice
are modeled using a K-component topic model—K is the number of topics—where
topics in a given time slice evolve from those in the previous time slice. This kind
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of representation could be extremely useful for a specialist in order to follow the
evolution of a single word, e.g., by inspecting the top words for diverse topics where
the word is framed in his research hypothesis—e.g., the “nuclear” word framed in
“innovation,” “risk,” or “energy” topics—or following the posterior estimate of the
frequency of the word as a function of the year, as shown in [10]. As stated by the
authors, one of the limitations of that approach is that the number of topics needs to
be specified beforehand; the work reported in [28] aimed to address this limitation
by introducing a non-parametric version for modeling topics over time.

Even if dynamic/time-aware versions of topic models can support specialists in
their investigation, the adoption of word embedding to study changes in a word
representation could provide complementary evidence to support or undermine a
research hypothesis. Indeed, as mentioned above, topic models are learned from a
more “global view,” while word embedding exploits a more “local view,” e.g., using
evidence from local context windows; this local view might help to obtain a word
representation that, in a way, “reflects the semantic, and sometimes also syntactic,
relationships between the words” [98]. Another point of view about the difference
between topic models and word embedding approaches could be the scale of the
dimension and the sparseness degree in the vector space. Intuitively, topic models
(especially the topic distribution over words) tend to adopt sparse vectors with
bigger dimensions, while the word embedding approaches adopt low-dimension
dense vectors which may save some memory space and provide more flexibility for
the high-level applications. Note that the difference in sparseness can be decreased
to some extent by the sparsing regularization as introduced by Vorontsov et al. [113].

The work reported in [55] discussed several approaches to identify “linguistic
change.” As an example of linguistic change, they referred to the change of the word
“gay” that shifted from the meaning of “cheerful” or “frolicsome” to homosexuality
(see Fig. 1 of that paper). They proposed three different approaches to generate time
series aimed to capture different aspects of word evolution across time: a frequency-
based method, a syntactic method, and a distributional method. Because of the
objective of this survey, we will focus on the last one. They divided the entire time
span of the dataset in time slices of the same size, e.g., 1-month or 5-year slices.
Then a word embedding technique—gensim implementation of the Skip-gram
model—was used to learn word representation in each slice; an alignment procedure
was then adopted to consider all the embeddings in a unique coordinate system.
Finally, the time series was obtained by calculating the distance between the time 0
and the time t in the embedding space of the final time slice. The use of time series
has several benefits, e.g., the possibility to use change point detection methods to
identify the point in time where the new word meaning became predominant. The
distributional approach was the most effective in the various evaluation settings:
synthetic evaluation, evaluation on a reference dataset, and evaluation with human
assessors.

In [37] the change in meaning of a word through time is referred to as a “semantic
change.” The authors report several examples in word meaning change, e.g., the
semantic change of the word “gay” as in [55] and that of the word “broadcast,”
which at the present time is mainly intended as a synonym of “transmitting signal.”
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While in the early twentieth century it meant “casting out seeds.” In that work,
static versions of word embedding techniques were used, but word embedding
was learned for each time slice and then aligned in order to make word vectors
from different time periods comparable; aligning is addressed as an Orthogonal
Procrustes Problem. Three word embedding techniques were considered. The first
is based on Positive Point-wise Mutual Information (PPMI) representations, where
PPMI values are computed with respect to pre-specified context words and are
prepared in a matrix whose rows are the word vector representations. The second
approach, in the paper referred to as SVD, considers a truncated version of the SVD
of the PPMI matrix. The last method is Skip-gram with negative sampling. The
work reported in that paper is pertinent to our “specialist user scenario” since the
main contribution is actually a methodology to investigate two research hypotheses.
In particular, the second hypothesis investigated is that “Polysemous words change
at faster rates”; this is related to an old hypothesis in linguistics that dates back
to [16] and states that “words become semantically extended by being used in
diverse contexts.” Subsequent works [29] show that the results obtained in the
literature for diverse hypotheses on semantic change—including those in [37]—
should be revised; using as a control test an artificially generated corpus with
“no semantic change” as a control test, they showed that the previously proposed
methodologies detected a semantic change in the control test as well. The same
result was observed for diverse hypotheses—see the survey reported in [56] for an
overview of the diverse hypotheses investigated. As mentioned by Dubossarsky et
al. [29], their result supports further research in evaluation of dynamic approaches
“articulating more stringent standards of proof and devising replicable control
conditions for future research on language change based on distributional semantics
representations” [29].

The work reported in [90] introduces a dynamic version of the exponential family
of embedding previously proposed in [91]. The reason for the introduction of the
exponential family of embedding was to generalize the idea of word embedding
to other data, e.g., neuronal activity or shopping for an item on the basis of the
context (other items in the shopping cart). The obtained results show that the
dynamic version of the exponential family embedding provides better results in
terms of conditional likelihood of held-out predictions when compared with static
embeddings [71, 91] and time-binned embeddings [37].

In [4] the authors extend the Bayesian Skip-gram Model proposed in [5] to a
dynamic version considering a diffusion process of the embedding vectors over
time, more specifically a Ornstein–Uhlenbeck process. Both of the two proposed
variants resulted in more smoothed word embedding trajectories11 than the base-
lines, which utilized the approach proposed in [37].

In [125] the authors proposed to find temporal word embedding to solve a
joint optimization problem where the “key” component is a smoothing term that

11Trajectories where based on the cosine distance between two words representation over time.
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encourages embedding to be aligned, thus explicitly solving the alignment problem
while learning embedding and avoiding a two-step strategy like that adopted in [37]
or in [55].

In [56] the authors report a number of open issues concerning the study of
temporal aspects of semantic shifts. Two challenges that are particularly relevant
to the works reported in this chapter and this venue are: (1) the lack of formal
mathematical models of diachronic embeddings; (2) the need for robust gold
standard test sets of semantic shifts; (3) the need for algorithms able to work on
small datasets. With regard to the first point, investigating quantum-inspired models
could be a possible research direction to find a formal mathematical framework
to model dynamic/diachronic word embeddings, e.g., exploiting the generalized
view of probability and the theory of time evolution of systems. With regard to the
second point, and evaluation in general, a possible direction is to devise tasks with
specialists, e.g., journalists, linguists, or social scientists, to create adequate datasets.
This is also related to the last point, i.e., the need for algorithms that are “robust” to
the size of the dataset: indeed, specialists, even when performing longitudinal user
studies, can rely on relatively small datasets in order to investigate specific research
issues. On the basis of the ongoing collaboration with sociologists and linguists,
another open issue that could be really beneficial for the specialists investigations
is “identifying groups of words that shift together in correlated ways” [56]; this
could be particularly useful to investigate how some thematic issues are perceived
by the public opinion and how this perception varies through time. As suggested
by the results reported in [29], evaluation protocols to measure these algorithms’
effectiveness should be rigorously designed.

As mentioned above, word embedding and topic models are based on two very
different views. Rudolph et al. [90] suggest another possible research direction in the
dynamic representation of words: devise models able to combine the two approaches
and exploit their “complementary” representations in dynamic settings.

5 Conclusion

We introduced many vector space based approaches for representing words, espe-
cially the word vector techniques. Regarding the word vector, we introduced many
variants presented throughout in the history and their limitations and trends. A
concise summary is reported in Table 4.

Since the effectiveness of word embedding is supported by the investigation in
many NLP and IR tasks and by many benchmarks, it is worth investigating further.
In the future, it is expected to incorporate some external knowledge like linguistic
features or the common sense of humans (like knowledge base) to word vectors.
Besides these empirical efforts, some theoretical understanding is also important to
this field, like the interpretability about why it works and where it does not work.
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Table 4 A summary including various word vector techniques

Algorithm Polysemy Interpretability OOV Speed

NNLM [7]

C&W [21]

Skip-gram [70] +

CBOW [70] +

Glove [78] +

Char-based embedding [132] +

Elmo [80] +

BERT [25] +

Gaussian embedding [112] +

Hyperbolic embedding [77] +

Meta embedding [127] +

Complex embedding [62] +

Some earlier works aim to develop fast-training methods, while recent works focus more on the
empirical performance with dynamic context-aware embedding and the intuitive understanding of
interpretable word vectors
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