Conv1d and Conv2d in PyTroch
Conv1d and Conv2d in PyTroch
</code> import torch.nn as nn import torch import numpy as np from torch.autograd import Variable x = Variable(torch.FloatTensor(np.random.rand(128,1,300*20))) conv = nn.Conv1d(in_channels = 1, out_channels =32, kernel_size = 600,stride= 300) y = conv(x) print(y.size()) x= x.view(x.size()[0],x.size()[1],-1,300) conv = nn.Conv2d(in_channels = 1, out_channels =32, kernel_size = (2,300)) y=conv(x) print(y.size()) y.squeeze().size() </code>